ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcnqs Unicode version

Theorem dfcnqs 7908
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in  CC from those in  R.. The trick involves qsid 6659, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that  CC is a quotient set, even though it is not (compare df-c 7885), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
dfcnqs  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )

Proof of Theorem dfcnqs
StepHypRef Expression
1 df-c 7885 . 2  |-  CC  =  ( R.  X.  R. )
2 qsid 6659 . 2  |-  ( ( R.  X.  R. ) /. `'  _E  )  =  ( R.  X.  R. )
31, 2eqtr4i 2220 1  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    _E cep 4322    X. cxp 4661   `'ccnv 4662   /.cqs 6591   R.cnr 7364   CCcc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-eprel 4324  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594  df-qs 6598  df-c 7885
This theorem is referenced by:  axmulcom  7938  axaddass  7939  axmulass  7940  axdistr  7941
  Copyright terms: Public domain W3C validator