ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcnsrec Unicode version

Theorem addcnsrec 8029
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 8028 and mulcnsrec 8030. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
addcnsrec  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C
) ,  ( B  +R  D ) >. ] `'  _E  )

Proof of Theorem addcnsrec
StepHypRef Expression
1 addcnsr 8021 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D )
>. )
2 opelxpi 4751 . . . 4  |-  ( ( A  e.  R.  /\  B  e.  R. )  -> 
<. A ,  B >.  e.  ( R.  X.  R. ) )
3 ecidg 6746 . . . 4  |-  ( <. A ,  B >.  e.  ( R.  X.  R. )  ->  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >. )
42, 3syl 14 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  [ <. A ,  B >. ] `'  _E  =  <. A ,  B >. )
5 opelxpi 4751 . . . 4  |-  ( ( C  e.  R.  /\  D  e.  R. )  -> 
<. C ,  D >.  e.  ( R.  X.  R. ) )
6 ecidg 6746 . . . 4  |-  ( <. C ,  D >.  e.  ( R.  X.  R. )  ->  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >. )
75, 6syl 14 . . 3  |-  ( ( C  e.  R.  /\  D  e.  R. )  ->  [ <. C ,  D >. ] `'  _E  =  <. C ,  D >. )
84, 7oveqan12d 6020 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  ( <. A ,  B >.  + 
<. C ,  D >. ) )
9 addclsr 7940 . . . . 5  |-  ( ( A  e.  R.  /\  C  e.  R. )  ->  ( A  +R  C
)  e.  R. )
109ad2ant2r 509 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  +R  C )  e.  R. )
11 addclsr 7940 . . . . 5  |-  ( ( B  e.  R.  /\  D  e.  R. )  ->  ( B  +R  D
)  e.  R. )
1211ad2ant2l 508 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  +R  D )  e.  R. )
13 opelxpi 4751 . . . 4  |-  ( ( ( A  +R  C
)  e.  R.  /\  ( B  +R  D
)  e.  R. )  -> 
<. ( A  +R  C
) ,  ( B  +R  D ) >.  e.  ( R.  X.  R. ) )
1410, 12, 13syl2anc 411 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  <. ( A  +R  C ) ,  ( B  +R  D
) >.  e.  ( R. 
X.  R. ) )
15 ecidg 6746 . . 3  |-  ( <.
( A  +R  C
) ,  ( B  +R  D ) >.  e.  ( R.  X.  R. )  ->  [ <. ( A  +R  C ) ,  ( B  +R  D
) >. ] `'  _E  =  <. ( A  +R  C ) ,  ( B  +R  D )
>. )
1614, 15syl 14 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  [ <. ( A  +R  C ) ,  ( B  +R  D
) >. ] `'  _E  =  <. ( A  +R  C ) ,  ( B  +R  D )
>. )
171, 8, 163eqtr4d 2272 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C
) ,  ( B  +R  D ) >. ] `'  _E  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   <.cop 3669    _E cep 4378    X. cxp 4717   `'ccnv 4718  (class class class)co 6001   [cec 6678   R.cnr 7484    +R cplr 7488    + caddc 8002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iplp 7655  df-enr 7913  df-nr 7914  df-plr 7915  df-c 8005  df-add 8010
This theorem is referenced by:  axaddass  8059  axdistr  8061
  Copyright terms: Public domain W3C validator