ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcnqs GIF version

Theorem dfcnqs 7974
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in from those in R. The trick involves qsid 6700, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that is a quotient set, even though it is not (compare df-c 7951), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
dfcnqs ℂ = ((R × R) / E )

Proof of Theorem dfcnqs
StepHypRef Expression
1 df-c 7951 . 2 ℂ = (R × R)
2 qsid 6700 . 2 ((R × R) / E ) = (R × R)
31, 2eqtr4i 2230 1 ℂ = ((R × R) / E )
Colors of variables: wff set class
Syntax hints:   = wceq 1373   E cep 4342   × cxp 4681  ccnv 4682   / cqs 6632  Rcnr 7430  cc 7943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-eprel 4344  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-ec 6635  df-qs 6639  df-c 7951
This theorem is referenced by:  axmulcom  8004  axaddass  8005  axmulass  8006  axdistr  8007
  Copyright terms: Public domain W3C validator