ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcnqs GIF version

Theorem dfcnqs 7901
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in from those in R. The trick involves qsid 6654, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that is a quotient set, even though it is not (compare df-c 7878), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
dfcnqs ℂ = ((R × R) / E )

Proof of Theorem dfcnqs
StepHypRef Expression
1 df-c 7878 . 2 ℂ = (R × R)
2 qsid 6654 . 2 ((R × R) / E ) = (R × R)
31, 2eqtr4i 2217 1 ℂ = ((R × R) / E )
Colors of variables: wff set class
Syntax hints:   = wceq 1364   E cep 4318   × cxp 4657  ccnv 4658   / cqs 6586  Rcnr 7357  cc 7870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-eprel 4320  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-ec 6589  df-qs 6593  df-c 7878
This theorem is referenced by:  axmulcom  7931  axaddass  7932  axmulass  7933  axdistr  7934
  Copyright terms: Public domain W3C validator