ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfcnqs GIF version

Theorem dfcnqs 7953
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in from those in R. The trick involves qsid 6686, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that is a quotient set, even though it is not (compare df-c 7930), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
dfcnqs ℂ = ((R × R) / E )

Proof of Theorem dfcnqs
StepHypRef Expression
1 df-c 7930 . 2 ℂ = (R × R)
2 qsid 6686 . 2 ((R × R) / E ) = (R × R)
31, 2eqtr4i 2228 1 ℂ = ((R × R) / E )
Colors of variables: wff set class
Syntax hints:   = wceq 1372   E cep 4333   × cxp 4672  ccnv 4673   / cqs 6618  Rcnr 7409  cc 7922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-eprel 4335  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-ec 6621  df-qs 6625  df-c 7930
This theorem is referenced by:  axmulcom  7983  axaddass  7984  axmulass  7985  axdistr  7986
  Copyright terms: Public domain W3C validator