| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfcnqs | GIF version | ||
| Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6686, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 7930), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7930 | . 2 ⊢ ℂ = (R × R) | |
| 2 | qsid 6686 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
| 3 | 1, 2 | eqtr4i 2228 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 E cep 4333 × cxp 4672 ◡ccnv 4673 / cqs 6618 Rcnr 7409 ℂcc 7922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-eprel 4335 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-ec 6621 df-qs 6625 df-c 7930 |
| This theorem is referenced by: axmulcom 7983 axaddass 7984 axmulass 7985 axdistr 7986 |
| Copyright terms: Public domain | W3C validator |