![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfcnqs | GIF version |
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6599, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 7816), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7816 | . 2 ⊢ ℂ = (R × R) | |
2 | qsid 6599 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
3 | 1, 2 | eqtr4i 2201 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 E cep 4287 × cxp 4624 ◡ccnv 4625 / cqs 6533 Rcnr 7295 ℂcc 7808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-eprel 4289 df-xp 4632 df-cnv 4634 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-ec 6536 df-qs 6540 df-c 7816 |
This theorem is referenced by: axmulcom 7869 axaddass 7870 axmulass 7871 axdistr 7872 |
Copyright terms: Public domain | W3C validator |