![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfcnqs | GIF version |
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6448, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 7550), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7550 | . 2 ⊢ ℂ = (R × R) | |
2 | qsid 6448 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
3 | 1, 2 | eqtr4i 2138 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1314 E cep 4169 × cxp 4497 ◡ccnv 4498 / cqs 6382 Rcnr 7050 ℂcc 7542 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-sbc 2879 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-br 3896 df-opab 3950 df-eprel 4171 df-xp 4505 df-cnv 4507 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-ec 6385 df-qs 6389 df-c 7550 |
This theorem is referenced by: axmulcom 7603 axaddass 7604 axmulass 7605 axdistr 7606 |
Copyright terms: Public domain | W3C validator |