Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfcnqs | GIF version |
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6578, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 7780), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7780 | . 2 ⊢ ℂ = (R × R) | |
2 | qsid 6578 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
3 | 1, 2 | eqtr4i 2194 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 E cep 4272 × cxp 4609 ◡ccnv 4610 / cqs 6512 Rcnr 7259 ℂcc 7772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-eprel 4274 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-ec 6515 df-qs 6519 df-c 7780 |
This theorem is referenced by: axmulcom 7833 axaddass 7834 axmulass 7835 axdistr 7836 |
Copyright terms: Public domain | W3C validator |