![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfcnqs | GIF version |
Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 6656, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 7880), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
dfcnqs | ⊢ ℂ = ((R × R) / ◡ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7880 | . 2 ⊢ ℂ = (R × R) | |
2 | qsid 6656 | . 2 ⊢ ((R × R) / ◡ E ) = (R × R) | |
3 | 1, 2 | eqtr4i 2217 | 1 ⊢ ℂ = ((R × R) / ◡ E ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 E cep 4319 × cxp 4658 ◡ccnv 4659 / cqs 6588 Rcnr 7359 ℂcc 7872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-eprel 4321 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-ec 6591 df-qs 6595 df-c 7880 |
This theorem is referenced by: axmulcom 7933 axaddass 7934 axmulass 7935 axdistr 7936 |
Copyright terms: Public domain | W3C validator |