ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltresr2 Unicode version

Theorem ltresr2 7852
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltresr2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  ( 1st `  A )  <R  ( 1st `  B ) ) )

Proof of Theorem ltresr2
StepHypRef Expression
1 elreal2 7842 . . . 4  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
21simprbi 275 . . 3  |-  ( A  e.  RR  ->  A  =  <. ( 1st `  A
) ,  0R >. )
3 elreal2 7842 . . . 4  |-  ( B  e.  RR  <->  ( ( 1st `  B )  e. 
R.  /\  B  =  <. ( 1st `  B
) ,  0R >. ) )
43simprbi 275 . . 3  |-  ( B  e.  RR  ->  B  =  <. ( 1st `  B
) ,  0R >. )
52, 4breqan12d 4031 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  <. ( 1st `  A ) ,  0R >. 
<RR  <. ( 1st `  B
) ,  0R >. ) )
6 ltresr 7851 . 2  |-  ( <.
( 1st `  A
) ,  0R >.  <RR  <. ( 1st `  B
) ,  0R >.  <->  ( 1st `  A )  <R 
( 1st `  B
) )
75, 6bitrdi 196 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  ( 1st `  A )  <R  ( 1st `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   <.cop 3607   class class class wbr 4015   ` cfv 5228   1stc1st 6152   R.cnr 7309   0Rc0r 7310    <R cltr 7315   RRcr 7823    <RR cltrr 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-1o 6430  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-pli 7317  df-mi 7318  df-lti 7319  df-plpq 7356  df-mpq 7357  df-enq 7359  df-nqqs 7360  df-plqqs 7361  df-mqqs 7362  df-1nqqs 7363  df-rq 7364  df-ltnqqs 7365  df-inp 7478  df-i1p 7479  df-enr 7738  df-nr 7739  df-ltr 7742  df-0r 7743  df-r 7834  df-lt 7837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator