ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun7 Unicode version

Theorem dffun7 5244
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one". However, dffun8 5245 shows that it does not matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
dffun7  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun7
StepHypRef Expression
1 dffun6 5231 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
2 moabs 2075 . . . . . 6  |-  ( E* y  x A y  <-> 
( E. y  x A y  ->  E* y  x A y ) )
3 vex 2741 . . . . . . . 8  |-  x  e. 
_V
43eldm 4825 . . . . . . 7  |-  ( x  e.  dom  A  <->  E. y  x A y )
54imbi1i 238 . . . . . 6  |-  ( ( x  e.  dom  A  ->  E* y  x A y )  <->  ( E. y  x A y  ->  E* y  x A
y ) )
62, 5bitr4i 187 . . . . 5  |-  ( E* y  x A y  <-> 
( x  e.  dom  A  ->  E* y  x A y ) )
76albii 1470 . . . 4  |-  ( A. x E* y  x A y  <->  A. x ( x  e.  dom  A  ->  E* y  x A
y ) )
8 df-ral 2460 . . . 4  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x
( x  e.  dom  A  ->  E* y  x A y ) )
97, 8bitr4i 187 . . 3  |-  ( A. x E* y  x A y  <->  A. x  e.  dom  A E* y  x A y )
109anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x E* y  x A y )  <->  ( Rel  A  /\  A. x  e. 
dom  A E* y  x A y ) )
111, 10bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351   E.wex 1492   E*wmo 2027    e. wcel 2148   A.wral 2455   class class class wbr 4004   dom cdm 4627   Rel wrel 4632   Fun wfun 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219
This theorem is referenced by:  dffun8  5245  dffun9  5246  funco  5257  funimaexglem  5300  frecuzrdgtcl  10412  frecuzrdgfunlem  10419  imasaddfnlemg  12735
  Copyright terms: Public domain W3C validator