ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun9 Unicode version

Theorem dffun9 5247
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
dffun9  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun9
StepHypRef Expression
1 dffun7 5245 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
2 vex 2742 . . . . . . . 8  |-  x  e. 
_V
3 vex 2742 . . . . . . . 8  |-  y  e. 
_V
42, 3brelrn 4862 . . . . . . 7  |-  ( x A y  ->  y  e.  ran  A )
54pm4.71ri 392 . . . . . 6  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
65mobii 2063 . . . . 5  |-  ( E* y  x A y  <->  E* y ( y  e. 
ran  A  /\  x A y ) )
7 df-rmo 2463 . . . . 5  |-  ( E* y  e.  ran  A  x A y  <->  E* y
( y  e.  ran  A  /\  x A y ) )
86, 7bitr4i 187 . . . 4  |-  ( E* y  x A y  <->  E* y  e.  ran  A  x A y )
98ralbii 2483 . . 3  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x  e.  dom  A E* y  e.  ran  A  x A y )
109anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x  e.  dom  A E* y  x A y )  <-> 
( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
111, 10bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E*wmo 2027    e. wcel 2148   A.wral 2455   E*wrmo 2458   class class class wbr 4005   dom cdm 4628   ran crn 4629   Rel wrel 4633   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rmo 2463  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator