ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun9 Unicode version

Theorem dffun9 5120
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
dffun9  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun9
StepHypRef Expression
1 dffun7 5118 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
2 vex 2661 . . . . . . . 8  |-  x  e. 
_V
3 vex 2661 . . . . . . . 8  |-  y  e. 
_V
42, 3brelrn 4740 . . . . . . 7  |-  ( x A y  ->  y  e.  ran  A )
54pm4.71ri 387 . . . . . 6  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
65mobii 2012 . . . . 5  |-  ( E* y  x A y  <->  E* y ( y  e. 
ran  A  /\  x A y ) )
7 df-rmo 2399 . . . . 5  |-  ( E* y  e.  ran  A  x A y  <->  E* y
( y  e.  ran  A  /\  x A y ) )
86, 7bitr4i 186 . . . 4  |-  ( E* y  x A y  <->  E* y  e.  ran  A  x A y )
98ralbii 2416 . . 3  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x  e.  dom  A E* y  e.  ran  A  x A y )
109anbi2i 450 . 2  |-  ( ( Rel  A  /\  A. x  e.  dom  A E* y  x A y )  <-> 
( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
111, 10bitri 183 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1463   E*wmo 1976   A.wral 2391   E*wrmo 2394   class class class wbr 3897   dom cdm 4507   ran crn 4508   Rel wrel 4512   Fun wfun 5085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rmo 2399  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-id 4183  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-fun 5093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator