ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun9 Unicode version

Theorem dffun9 5283
Description: Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
dffun9  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
Distinct variable group:    x, y, A

Proof of Theorem dffun9
StepHypRef Expression
1 dffun7 5281 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
2 vex 2763 . . . . . . . 8  |-  x  e. 
_V
3 vex 2763 . . . . . . . 8  |-  y  e. 
_V
42, 3brelrn 4895 . . . . . . 7  |-  ( x A y  ->  y  e.  ran  A )
54pm4.71ri 392 . . . . . 6  |-  ( x A y  <->  ( y  e.  ran  A  /\  x A y ) )
65mobii 2079 . . . . 5  |-  ( E* y  x A y  <->  E* y ( y  e. 
ran  A  /\  x A y ) )
7 df-rmo 2480 . . . . 5  |-  ( E* y  e.  ran  A  x A y  <->  E* y
( y  e.  ran  A  /\  x A y ) )
86, 7bitr4i 187 . . . 4  |-  ( E* y  x A y  <->  E* y  e.  ran  A  x A y )
98ralbii 2500 . . 3  |-  ( A. x  e.  dom  A E* y  x A y  <->  A. x  e.  dom  A E* y  e.  ran  A  x A y )
109anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x  e.  dom  A E* y  x A y )  <-> 
( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
111, 10bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E*wmo 2043    e. wcel 2164   A.wral 2472   E*wrmo 2475   class class class wbr 4029   dom cdm 4659   ran crn 4660   Rel wrel 4664   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rmo 2480  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator