Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun3g GIF version

Theorem dfiun3g 4800
 Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiun3g (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))

Proof of Theorem dfiun3g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiun2g 3849 . 2 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2 eqid 2140 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32rnmpt 4791 . . 3 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
43unieqi 3750 . 2 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
51, 4eqtr4di 2191 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332   ∈ wcel 1481  {cab 2126  ∀wral 2417  ∃wrex 2418  ∪ cuni 3740  ∪ ciun 3817   ↦ cmpt 3993  ran crn 4544 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-cnv 4551  df-dm 4553  df-rn 4554 This theorem is referenced by:  dfiun3  4802  iunon  6185  tgiun  12272
 Copyright terms: Public domain W3C validator