ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgiun Unicode version

Theorem tgiun 12867
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B )
)
Distinct variable groups:    x, A    x, B    x, V
Allowed substitution hint:    C( x)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 4868 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  U_ x  e.  A  C  =  U. ran  ( x  e.  A  |->  C ) )
21adantl 275 . 2  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  =  U. ran  ( x  e.  A  |->  C ) )
3 eqid 2170 . . . 4  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
43rnmptss 5657 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ran  (
x  e.  A  |->  C )  C_  B )
5 eltg3i 12850 . . 3  |-  ( ( B  e.  V  /\  ran  ( x  e.  A  |->  C )  C_  B
)  ->  U. ran  (
x  e.  A  |->  C )  e.  ( topGen `  B ) )
64, 5sylan2 284 . 2  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U. ran  ( x  e.  A  |->  C )  e.  (
topGen `  B ) )
72, 6eqeltrd 2247 1  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   U.cuni 3796   U_ciun 3873    |-> cmpt 4050   ran crn 4612   ` cfv 5198   topGenctg 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-topgen 12600
This theorem is referenced by:  txbasval  13061
  Copyright terms: Public domain W3C validator