ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgiun Unicode version

Theorem tgiun 12713
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B )
)
Distinct variable groups:    x, A    x, B    x, V
Allowed substitution hint:    C( x)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 4861 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  U_ x  e.  A  C  =  U. ran  ( x  e.  A  |->  C ) )
21adantl 275 . 2  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  =  U. ran  ( x  e.  A  |->  C ) )
3 eqid 2165 . . . 4  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
43rnmptss 5646 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ran  (
x  e.  A  |->  C )  C_  B )
5 eltg3i 12696 . . 3  |-  ( ( B  e.  V  /\  ran  ( x  e.  A  |->  C )  C_  B
)  ->  U. ran  (
x  e.  A  |->  C )  e.  ( topGen `  B ) )
64, 5sylan2 284 . 2  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U. ran  ( x  e.  A  |->  C )  e.  (
topGen `  B ) )
72, 6eqeltrd 2243 1  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   U.cuni 3789   U_ciun 3866    |-> cmpt 4043   ran crn 4605   ` cfv 5188   topGenctg 12571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-topgen 12577
This theorem is referenced by:  txbasval  12907
  Copyright terms: Public domain W3C validator