![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrn3 | GIF version |
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfrn3 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 4817 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} | |
2 | df-br 4006 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 2 | exbii 1605 | . . 3 ⊢ (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
4 | 3 | abbii 2293 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} |
5 | 1, 4 | eqtri 2198 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 ⟨cop 3597 class class class wbr 4005 ran crn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: elrn2g 4819 elrn2 4871 imadmrn 4982 imassrn 4983 csbrng 5092 |
Copyright terms: Public domain | W3C validator |