ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn3 GIF version

Theorem dfrn3 4875
Description: Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfrn3 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn3
StepHypRef Expression
1 dfrn2 4874 . 2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
2 df-br 4052 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32exbii 1629 . . 3 (∃𝑥 𝑥𝐴𝑦 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
43abbii 2322 . 2 {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
51, 4eqtri 2227 1 ran 𝐴 = {𝑦 ∣ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wex 1516  wcel 2177  {cab 2192  cop 3641   class class class wbr 4051  ran crn 4684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-cnv 4691  df-dm 4693  df-rn 4694
This theorem is referenced by:  elrn2g  4876  elrn2  4929  imadmrn  5041  imassrn  5042  csbrng  5153
  Copyright terms: Public domain W3C validator