ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enpr1g Unicode version

Theorem enpr1g 6913
Description:  { A ,  A } has only one element. (Contributed by FL, 15-Feb-2010.)
Assertion
Ref Expression
enpr1g  |-  ( A  e.  V  ->  { A ,  A }  ~~  1o )

Proof of Theorem enpr1g
StepHypRef Expression
1 dfsn2 3657 . 2  |-  { A }  =  { A ,  A }
2 ensn1g 6912 . 2  |-  ( A  e.  V  ->  { A }  ~~  1o )
31, 2eqbrtrrid 4095 1  |-  ( A  e.  V  ->  { A ,  A }  ~~  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   {csn 3643   {cpr 3644   class class class wbr 4059   1oc1o 6518    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-1o 6525  df-en 6851
This theorem is referenced by:  pr2ne  7326  pr1or2  7328
  Copyright terms: Public domain W3C validator