ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2d GIF version

Theorem difeq2d 3290
Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
difeq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem difeq2d
StepHypRef Expression
1 difeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 difeq2 3284 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  cdif 3162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-ral 2488  df-rab 2492  df-dif 3167
This theorem is referenced by:  difeq12d  3291  exmid1stab  4251  phplem3  6950  phplem4  6951  phplem3g  6952  phplem4dom  6958  phplem4on  6963  fidifsnen  6966  xpfi  7028  sbthlem2  7059  sbthlemi3  7060  isbth  7068  ismkvnex  7256  setsvalg  12804  setsvala  12805
  Copyright terms: Public domain W3C validator