ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2d GIF version

Theorem difeq2d 3322
Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
difeq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem difeq2d
StepHypRef Expression
1 difeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 difeq2 3316 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cdif 3194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-rab 2517  df-dif 3199
This theorem is referenced by:  difeq12d  3323  exmid1stab  4291  phplem3  7011  phplem4  7012  phplem3g  7013  phplem4dom  7019  phplem4on  7025  fidifsnen  7028  xpfi  7090  sbthlem2  7121  sbthlemi3  7122  isbth  7130  ismkvnex  7318  setsvalg  13057  setsvala  13058
  Copyright terms: Public domain W3C validator