ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2d GIF version

Theorem difeq2d 3268
Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
difeq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem difeq2d
StepHypRef Expression
1 difeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 difeq2 3262 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cdif 3141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-ral 2473  df-rab 2477  df-dif 3146
This theorem is referenced by:  difeq12d  3269  exmid1stab  4223  phplem3  6872  phplem4  6873  phplem3g  6874  phplem4dom  6880  phplem4on  6885  fidifsnen  6888  xpfi  6947  sbthlem2  6975  sbthlemi3  6976  isbth  6984  ismkvnex  7171  setsvalg  12510  setsvala  12511
  Copyright terms: Public domain W3C validator