ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmptd GIF version

Theorem dmmptd 5365
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dmmptd.a 𝐴 = (𝑥𝐵𝐶)
dmmptd.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmptd (𝜑 → dom 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem dmmptd
StepHypRef Expression
1 dmmptd.a . . 3 𝐴 = (𝑥𝐵𝐶)
21dmmpt 5142 . 2 dom 𝐴 = {𝑥𝐵𝐶 ∈ V}
3 dmmptd.c . . . . 5 ((𝜑𝑥𝐵) → 𝐶𝑉)
43elexd 2765 . . . 4 ((𝜑𝑥𝐵) → 𝐶 ∈ V)
54ralrimiva 2563 . . 3 (𝜑 → ∀𝑥𝐵 𝐶 ∈ V)
6 rabid2 2667 . . 3 (𝐵 = {𝑥𝐵𝐶 ∈ V} ↔ ∀𝑥𝐵 𝐶 ∈ V)
75, 6sylibr 134 . 2 (𝜑𝐵 = {𝑥𝐵𝐶 ∈ V})
82, 7eqtr4id 2241 1 (𝜑 → dom 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468  {crab 2472  Vcvv 2752  cmpt 4079  dom cdm 4644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-mpt 4081  df-xp 4650  df-rel 4651  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657
This theorem is referenced by:  4sqlemffi  12431  limccnp2cntop  14623
  Copyright terms: Public domain W3C validator