Step | Hyp | Ref
| Expression |
1 | | limccnp2.j |
. . . . 5
↾t |
2 | | limccnp2cntop.k |
. . . . . . . 8
|
3 | 2 | cntoptopon 13326 |
. . . . . . 7
TopOn |
4 | | txtopon 13056 |
. . . . . . 7
TopOn
TopOn
TopOn |
5 | 3, 3, 4 | mp2an 424 |
. . . . . 6
TopOn |
6 | | limccnp2.x |
. . . . . . 7
|
7 | | limccnp2.y |
. . . . . . 7
|
8 | | xpss12 4718 |
. . . . . . 7
|
9 | 6, 7, 8 | syl2anc 409 |
. . . . . 6
|
10 | | resttopon 12965 |
. . . . . 6
TopOn
↾t TopOn |
11 | 5, 9, 10 | sylancr 412 |
. . . . 5
↾t TopOn |
12 | 1, 11 | eqeltrid 2257 |
. . . 4
TopOn
|
13 | 3 | a1i 9 |
. . . 4
TopOn |
14 | | limccnp2.h |
. . . 4
|
15 | | cnpf2 13001 |
. . . 4
TopOn
TopOn
|
16 | 12, 13, 14, 15 | syl3anc 1233 |
. . 3
|
17 | 2 | cntoptop 13327 |
. . . . . . . . . . 11
|
18 | 17 | a1i 9 |
. . . . . . . . . . 11
|
19 | | txtop 13054 |
. . . . . . . . . . 11
|
20 | 17, 18, 19 | sylancr 412 |
. . . . . . . . . 10
|
21 | | cnex 7898 |
. . . . . . . . . . . . 13
|
22 | 21 | a1i 9 |
. . . . . . . . . . . 12
|
23 | 22, 6 | ssexd 4129 |
. . . . . . . . . . 11
|
24 | 22, 7 | ssexd 4129 |
. . . . . . . . . . 11
|
25 | | xpexg 4725 |
. . . . . . . . . . 11
|
26 | 23, 24, 25 | syl2anc 409 |
. . . . . . . . . 10
|
27 | | resttop 12964 |
. . . . . . . . . 10
↾t |
28 | 20, 26, 27 | syl2anc 409 |
. . . . . . . . 9
↾t |
29 | 1, 28 | eqeltrid 2257 |
. . . . . . . 8
|
30 | | toptopon2 12811 |
. . . . . . . 8
TopOn |
31 | 29, 30 | sylib 121 |
. . . . . . 7
TopOn |
32 | | cnprcl2k 13000 |
. . . . . . 7
TopOn |
33 | 31, 18, 14, 32 | syl3anc 1233 |
. . . . . 6
|
34 | | toponuni 12807 |
. . . . . . 7
TopOn |
35 | 12, 34 | syl 14 |
. . . . . 6
|
36 | 33, 35 | eleqtrrd 2250 |
. . . . 5
|
37 | | opelxp 4641 |
. . . . 5
|
38 | 36, 37 | sylib 121 |
. . . 4
|
39 | 38 | simpld 111 |
. . 3
|
40 | 38 | simprd 113 |
. . 3
|
41 | 16, 39, 40 | fovrnd 5997 |
. 2
|
42 | | txrest 13070 |
. . . . . . . . . . . . 13
↾t ↾t ↾t |
43 | 18, 18, 23, 24, 42 | syl22anc 1234 |
. . . . . . . . . . . 12
↾t ↾t ↾t |
44 | 1, 43 | eqtrid 2215 |
. . . . . . . . . . 11
↾t ↾t |
45 | | cnxmet 13325 |
. . . . . . . . . . . . 13
|
46 | | eqid 2170 |
. . . . . . . . . . . . . 14
|
47 | | eqid 2170 |
. . . . . . . . . . . . . 14
|
48 | 46, 2, 47 | metrest 13300 |
. . . . . . . . . . . . 13
↾t
|
49 | 45, 6, 48 | sylancr 412 |
. . . . . . . . . . . 12
↾t
|
50 | | eqid 2170 |
. . . . . . . . . . . . . 14
|
51 | | eqid 2170 |
. . . . . . . . . . . . . 14
|
52 | 50, 2, 51 | metrest 13300 |
. . . . . . . . . . . . 13
↾t
|
53 | 45, 7, 52 | sylancr 412 |
. . . . . . . . . . . 12
↾t
|
54 | 49, 53 | oveq12d 5871 |
. . . . . . . . . . 11
↾t ↾t
|
55 | 44, 54 | eqtrd 2203 |
. . . . . . . . . 10
|
56 | 55 | oveq1d 5868 |
. . . . . . . . 9
|
57 | 56 | fveq1d 5498 |
. . . . . . . 8
|
58 | 14, 57 | eleqtrd 2249 |
. . . . . . 7
|
59 | | xmetres2 13173 |
. . . . . . . . 9
|
60 | 45, 6, 59 | sylancr 412 |
. . . . . . . 8
|
61 | | xmetres2 13173 |
. . . . . . . . 9
|
62 | 45, 7, 61 | sylancr 412 |
. . . . . . . 8
|
63 | 45 | a1i 9 |
. . . . . . . 8
|
64 | 47, 51, 2 | txmetcnp 13312 |
. . . . . . . 8
|
65 | 60, 62, 63, 38, 64 | syl31anc 1236 |
. . . . . . 7
|
66 | 58, 65 | mpbid 146 |
. . . . . 6
|
67 | 66 | simprd 113 |
. . . . 5
|
68 | 67 | r19.21bi 2558 |
. . . 4
|
69 | | simpll 524 |
. . . . . 6
|
70 | | simprl 526 |
. . . . . 6
|
71 | | limccnp2.c |
. . . . . . . . 9
lim |
72 | | eqid 2170 |
. . . . . . . . . . . 12
|
73 | | limccnp2.r |
. . . . . . . . . . . 12
|
74 | 72, 73 | dmmptd 5328 |
. . . . . . . . . . 11
|
75 | | limcrcl 13421 |
. . . . . . . . . . . . 13
lim
|
76 | 71, 75 | syl 14 |
. . . . . . . . . . . 12
|
77 | 76 | simp2d 1005 |
. . . . . . . . . . 11
|
78 | 74, 77 | eqsstrrd 3184 |
. . . . . . . . . 10
|
79 | 76 | simp3d 1006 |
. . . . . . . . . 10
|
80 | 6 | adantr 274 |
. . . . . . . . . . 11
|
81 | 80, 73 | sseldd 3148 |
. . . . . . . . . 10
|
82 | 78, 79, 81 | limcmpted 13426 |
. . . . . . . . 9
lim #
|
83 | 71, 82 | mpbid 146 |
. . . . . . . 8
# |
84 | 83 | simprd 113 |
. . . . . . 7
# |
85 | 84 | r19.21bi 2558 |
. . . . . 6
#
|
86 | 69, 70, 85 | syl2anc 409 |
. . . . 5
# |
87 | 69 | adantr 274 |
. . . . . . 7
#
|
88 | | simplrl 530 |
. . . . . . 7
#
|
89 | | limccnp2.d |
. . . . . . . . . 10
lim |
90 | 7 | adantr 274 |
. . . . . . . . . . . 12
|
91 | | limccnp2.s |
. . . . . . . . . . . 12
|
92 | 90, 91 | sseldd 3148 |
. . . . . . . . . . 11
|
93 | 78, 79, 92 | limcmpted 13426 |
. . . . . . . . . 10
lim #
|
94 | 89, 93 | mpbid 146 |
. . . . . . . . 9
# |
95 | 94 | simprd 113 |
. . . . . . . 8
# |
96 | 95 | r19.21bi 2558 |
. . . . . . 7
#
|
97 | 87, 88, 96 | syl2anc 409 |
. . . . . 6
#
#
|
98 | | simp-5l 538 |
. . . . . . . 8
#
#
|
99 | 98, 73 | sylancom 418 |
. . . . . . 7
#
#
|
100 | 98, 91 | sylancom 418 |
. . . . . . 7
#
#
|
101 | 6 | ad4antr 491 |
. . . . . . 7
#
#
|
102 | 7 | ad4antr 491 |
. . . . . . 7
#
#
|
103 | 71 | ad4antr 491 |
. . . . . . 7
#
#
lim |
104 | 89 | ad4antr 491 |
. . . . . . 7
#
#
lim |
105 | 14 | ad4antr 491 |
. . . . . . 7
#
#
|
106 | | nfv 1521 |
. . . . . . . . 9
|
107 | | nfv 1521 |
. . . . . . . . . 10
|
108 | | nfra1 2501 |
. . . . . . . . . 10
#
|
109 | 107, 108 | nfan 1558 |
. . . . . . . . 9
#
|
110 | 106, 109 | nfan 1558 |
. . . . . . . 8
#
|
111 | | nfv 1521 |
. . . . . . . . 9
|
112 | | nfra1 2501 |
. . . . . . . . 9
#
|
113 | 111, 112 | nfan 1558 |
. . . . . . . 8
#
|
114 | 110, 113 | nfan 1558 |
. . . . . . 7
#
#
|
115 | | simp-4r 537 |
. . . . . . 7
#
#
|
116 | 70 | ad2antrr 485 |
. . . . . . 7
#
#
|
117 | | simprr 527 |
. . . . . . . 8
|
118 | 117 | ad2antrr 485 |
. . . . . . 7
#
#
|
119 | | simplrl 530 |
. . . . . . 7
#
#
|
120 | | simplrr 531 |
. . . . . . 7
#
#
# |
121 | | simprl 526 |
. . . . . . 7
#
#
|
122 | | simprr 527 |
. . . . . . 7
#
#
# |
123 | 99, 100, 101, 102, 2, 1, 103, 104, 105, 114, 115, 116, 118, 119, 120, 121, 122 | limccnp2lem 13439 |
. . . . . 6
#
#
#
|
124 | 97, 123 | rexlimddv 2592 |
. . . . 5
#
#
|
125 | 86, 124 | rexlimddv 2592 |
. . . 4
# |
126 | 68, 125 | rexlimddv 2592 |
. . 3
#
|
127 | 126 | ralrimiva 2543 |
. 2
# |
128 | 16 | adantr 274 |
. . . 4
|
129 | 128, 73, 91 | fovrnd 5997 |
. . 3
|
130 | 78, 79, 129 | limcmpted 13426 |
. 2
lim # |
131 | 41, 127, 130 | mpbir2and 939 |
1
lim |