ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm Unicode version

Theorem dmxpm 4907
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem dmxpm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2269 . . 3  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
21cbvexv 1943 . 2  |-  ( E. x  x  e.  B  <->  E. z  z  e.  B
)
3 df-xp 4689 . . . 4  |-  ( A  X.  B )  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
43dmeqi 4888 . . 3  |-  dom  ( A  X.  B )  =  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }
5 id 19 . . . . 5  |-  ( E. z  z  e.  B  ->  E. z  z  e.  B )
65ralrimivw 2581 . . . 4  |-  ( E. z  z  e.  B  ->  A. y  e.  A  E. z  z  e.  B )
7 dmopab3 4900 . . . 4  |-  ( A. y  e.  A  E. z  z  e.  B  <->  dom 
{ <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
86, 7sylib 122 . . 3  |-  ( E. z  z  e.  B  ->  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
94, 8eqtrid 2251 . 2  |-  ( E. z  z  e.  B  ->  dom  ( A  X.  B )  =  A )
102, 9sylbi 121 1  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485   {copab 4112    X. cxp 4681   dom cdm 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-dm 4693
This theorem is referenced by:  rnxpm  5121  ssxpbm  5127  ssxp1  5128  xpexr2m  5133  relrelss  5218  unixpm  5227  exmidfodomrlemim  7325  pwsbas  13199  imasaddfnlemg  13221
  Copyright terms: Public domain W3C validator