ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm Unicode version

Theorem dmxpm 4886
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem dmxpm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . 3  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
21cbvexv 1933 . 2  |-  ( E. x  x  e.  B  <->  E. z  z  e.  B
)
3 df-xp 4669 . . . 4  |-  ( A  X.  B )  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
43dmeqi 4867 . . 3  |-  dom  ( A  X.  B )  =  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }
5 id 19 . . . . 5  |-  ( E. z  z  e.  B  ->  E. z  z  e.  B )
65ralrimivw 2571 . . . 4  |-  ( E. z  z  e.  B  ->  A. y  e.  A  E. z  z  e.  B )
7 dmopab3 4879 . . . 4  |-  ( A. y  e.  A  E. z  z  e.  B  <->  dom 
{ <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
86, 7sylib 122 . . 3  |-  ( E. z  z  e.  B  ->  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
94, 8eqtrid 2241 . 2  |-  ( E. z  z  e.  B  ->  dom  ( A  X.  B )  =  A )
102, 9sylbi 121 1  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   {copab 4093    X. cxp 4661   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-dm 4673
This theorem is referenced by:  rnxpm  5099  ssxpbm  5105  ssxp1  5106  xpexr2m  5111  relrelss  5196  unixpm  5205  exmidfodomrlemim  7268  imasaddfnlemg  12957
  Copyright terms: Public domain W3C validator