ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm Unicode version

Theorem dmxpm 4882
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem dmxpm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . . 3  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
21cbvexv 1930 . 2  |-  ( E. x  x  e.  B  <->  E. z  z  e.  B
)
3 df-xp 4665 . . . 4  |-  ( A  X.  B )  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
43dmeqi 4863 . . 3  |-  dom  ( A  X.  B )  =  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }
5 id 19 . . . . 5  |-  ( E. z  z  e.  B  ->  E. z  z  e.  B )
65ralrimivw 2568 . . . 4  |-  ( E. z  z  e.  B  ->  A. y  e.  A  E. z  z  e.  B )
7 dmopab3 4875 . . . 4  |-  ( A. y  e.  A  E. z  z  e.  B  <->  dom 
{ <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
86, 7sylib 122 . . 3  |-  ( E. z  z  e.  B  ->  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
94, 8eqtrid 2238 . 2  |-  ( E. z  z  e.  B  ->  dom  ( A  X.  B )  =  A )
102, 9sylbi 121 1  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   {copab 4089    X. cxp 4657   dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669
This theorem is referenced by:  rnxpm  5095  ssxpbm  5101  ssxp1  5102  xpexr2m  5107  relrelss  5192  unixpm  5201  exmidfodomrlemim  7261  imasaddfnlemg  12897
  Copyright terms: Public domain W3C validator