| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmxpm | Unicode version | ||
| Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmxpm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 |
. . 3
| |
| 2 | 1 | cbvexv 1965 |
. 2
|
| 3 | df-xp 4724 |
. . . 4
| |
| 4 | 3 | dmeqi 4923 |
. . 3
|
| 5 | id 19 |
. . . . 5
| |
| 6 | 5 | ralrimivw 2604 |
. . . 4
|
| 7 | dmopab3 4935 |
. . . 4
| |
| 8 | 6, 7 | sylib 122 |
. . 3
|
| 9 | 4, 8 | eqtrid 2274 |
. 2
|
| 10 | 2, 9 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-dm 4728 |
| This theorem is referenced by: rnxpm 5157 ssxpbm 5163 ssxp1 5164 xpexr2m 5169 relrelss 5254 unixpm 5263 exmidfodomrlemim 7375 pwsbas 13320 imasaddfnlemg 13342 |
| Copyright terms: Public domain | W3C validator |