Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmxpm | Unicode version |
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmxpm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2217 | . . 3 | |
2 | 1 | cbvexv 1895 | . 2 |
3 | df-xp 4585 | . . . 4 | |
4 | 3 | dmeqi 4780 | . . 3 |
5 | id 19 | . . . . 5 | |
6 | 5 | ralrimivw 2528 | . . . 4 |
7 | dmopab3 4792 | . . . 4 | |
8 | 6, 7 | sylib 121 | . . 3 |
9 | 4, 8 | syl5eq 2199 | . 2 |
10 | 2, 9 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wex 1469 wcel 2125 wral 2432 copab 4020 cxp 4577 cdm 4579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-xp 4585 df-dm 4589 |
This theorem is referenced by: rnxpm 5008 ssxpbm 5014 ssxp1 5015 xpexr2m 5020 relrelss 5105 unixpm 5114 exmidfodomrlemim 7115 |
Copyright terms: Public domain | W3C validator |