ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmxpm Unicode version

Theorem dmxpm 4759
Description: The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmxpm  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem dmxpm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2202 . . 3  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
21cbvexv 1890 . 2  |-  ( E. x  x  e.  B  <->  E. z  z  e.  B
)
3 df-xp 4545 . . . 4  |-  ( A  X.  B )  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }
43dmeqi 4740 . . 3  |-  dom  ( A  X.  B )  =  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }
5 id 19 . . . . 5  |-  ( E. z  z  e.  B  ->  E. z  z  e.  B )
65ralrimivw 2506 . . . 4  |-  ( E. z  z  e.  B  ->  A. y  e.  A  E. z  z  e.  B )
7 dmopab3 4752 . . . 4  |-  ( A. y  e.  A  E. z  z  e.  B  <->  dom 
{ <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
86, 7sylib 121 . . 3  |-  ( E. z  z  e.  B  ->  dom  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B ) }  =  A )
94, 8syl5eq 2184 . 2  |-  ( E. z  z  e.  B  ->  dom  ( A  X.  B )  =  A )
102, 9sylbi 120 1  |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   {copab 3988    X. cxp 4537   dom cdm 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-dm 4549
This theorem is referenced by:  rnxpm  4968  ssxpbm  4974  ssxp1  4975  xpexr2m  4980  relrelss  5065  unixpm  5074  exmidfodomrlemim  7057
  Copyright terms: Public domain W3C validator