ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemeldju Unicode version

Theorem exmidfodomrlemeldju 7048
Description: Lemma for exmidfodomr 7053. A variant of djur 6947. (Contributed by Jim Kingdon, 2-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemeldju.a  |-  ( ph  ->  A  C_  1o )
exmidfodomrlemeldju.el  |-  ( ph  ->  B  e.  ( A 1o ) )
Assertion
Ref Expression
exmidfodomrlemeldju  |-  ( ph  ->  ( B  =  (inl
`  (/) )  \/  B  =  (inr `  (/) ) ) )

Proof of Theorem exmidfodomrlemeldju
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemeldju.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  1o )
21sselda 3092 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  1o )
3 el1o 6327 . . . . . . . . 9  |-  ( x  e.  1o  <->  x  =  (/) )
42, 3sylib 121 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  x  =  (/) )
54fveq2d 5418 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (inl `  x )  =  (inl
`  (/) ) )
65eqeq2d 2149 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  (inl `  x
)  <->  B  =  (inl `  (/) ) ) )
76biimpd 143 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  (inl `  x
)  ->  B  =  (inl `  (/) ) ) )
87rexlimdva 2547 . . . 4  |-  ( ph  ->  ( E. x  e.  A  B  =  (inl
`  x )  ->  B  =  (inl `  (/) ) ) )
98imp 123 . . 3  |-  ( (
ph  /\  E. x  e.  A  B  =  (inl `  x ) )  ->  B  =  (inl
`  (/) ) )
109orcd 722 . 2  |-  ( (
ph  /\  E. x  e.  A  B  =  (inl `  x ) )  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
11 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  1o )  ->  x  e.  1o )
1211, 3sylib 121 . . . . . . . 8  |-  ( (
ph  /\  x  e.  1o )  ->  x  =  (/) )
1312fveq2d 5418 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  ->  (inr `  x )  =  (inr
`  (/) ) )
1413eqeq2d 2149 . . . . . 6  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  (inr `  x
)  <->  B  =  (inr `  (/) ) ) )
1514biimpd 143 . . . . 5  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  (inr `  x
)  ->  B  =  (inr `  (/) ) ) )
1615rexlimdva 2547 . . . 4  |-  ( ph  ->  ( E. x  e.  1o  B  =  (inr
`  x )  ->  B  =  (inr `  (/) ) ) )
1716imp 123 . . 3  |-  ( (
ph  /\  E. x  e.  1o  B  =  (inr
`  x ) )  ->  B  =  (inr
`  (/) ) )
1817olcd 723 . 2  |-  ( (
ph  /\  E. x  e.  1o  B  =  (inr
`  x ) )  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
19 exmidfodomrlemeldju.el . . 3  |-  ( ph  ->  B  e.  ( A 1o ) )
20 djur 6947 . . 3  |-  ( B  e.  ( A 1o )  <-> 
( E. x  e.  A  B  =  (inl
`  x )  \/ 
E. x  e.  1o  B  =  (inr `  x
) ) )
2119, 20sylib 121 . 2  |-  ( ph  ->  ( E. x  e.  A  B  =  (inl
`  x )  \/ 
E. x  e.  1o  B  =  (inr `  x
) ) )
2210, 18, 21mpjaodan 787 1  |-  ( ph  ->  ( B  =  (inl
`  (/) )  \/  B  =  (inr `  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   E.wrex 2415    C_ wss 3066   (/)c0 3358   ` cfv 5118   1oc1o 6299   ⊔ cdju 6915  inlcinl 6923  inrcinr 6924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1st 6031  df-2nd 6032  df-1o 6306  df-dju 6916  df-inl 6925  df-inr 6926
This theorem is referenced by:  exmidfodomrlemr  7051
  Copyright terms: Public domain W3C validator