Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidfodomrlemeldju | Unicode version |
Description: Lemma for exmidfodomr 7160. A variant of djur 7034. (Contributed by Jim Kingdon, 2-Jul-2022.) |
Ref | Expression |
---|---|
exmidfodomrlemeldju.a | |
exmidfodomrlemeldju.el | ⊔ |
Ref | Expression |
---|---|
exmidfodomrlemeldju | inl inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidfodomrlemeldju.a | . . . . . . . . . 10 | |
2 | 1 | sselda 3142 | . . . . . . . . 9 |
3 | el1o 6405 | . . . . . . . . 9 | |
4 | 2, 3 | sylib 121 | . . . . . . . 8 |
5 | 4 | fveq2d 5490 | . . . . . . 7 inl inl |
6 | 5 | eqeq2d 2177 | . . . . . 6 inl inl |
7 | 6 | biimpd 143 | . . . . 5 inl inl |
8 | 7 | rexlimdva 2583 | . . . 4 inl inl |
9 | 8 | imp 123 | . . 3 inl inl |
10 | 9 | orcd 723 | . 2 inl inl inr |
11 | simpr 109 | . . . . . . . . 9 | |
12 | 11, 3 | sylib 121 | . . . . . . . 8 |
13 | 12 | fveq2d 5490 | . . . . . . 7 inr inr |
14 | 13 | eqeq2d 2177 | . . . . . 6 inr inr |
15 | 14 | biimpd 143 | . . . . 5 inr inr |
16 | 15 | rexlimdva 2583 | . . . 4 inr inr |
17 | 16 | imp 123 | . . 3 inr inr |
18 | 17 | olcd 724 | . 2 inr inl inr |
19 | exmidfodomrlemeldju.el | . . 3 ⊔ | |
20 | djur 7034 | . . 3 ⊔ inl inr | |
21 | 19, 20 | sylib 121 | . 2 inl inr |
22 | 10, 18, 21 | mpjaodan 788 | 1 inl inr |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 wrex 2445 wss 3116 c0 3409 cfv 5188 c1o 6377 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: exmidfodomrlemr 7158 |
Copyright terms: Public domain | W3C validator |