ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemeldju Unicode version

Theorem exmidfodomrlemeldju 7155
Description: Lemma for exmidfodomr 7160. A variant of djur 7034. (Contributed by Jim Kingdon, 2-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemeldju.a  |-  ( ph  ->  A  C_  1o )
exmidfodomrlemeldju.el  |-  ( ph  ->  B  e.  ( A 1o ) )
Assertion
Ref Expression
exmidfodomrlemeldju  |-  ( ph  ->  ( B  =  (inl
`  (/) )  \/  B  =  (inr `  (/) ) ) )

Proof of Theorem exmidfodomrlemeldju
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemeldju.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  1o )
21sselda 3142 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  1o )
3 el1o 6405 . . . . . . . . 9  |-  ( x  e.  1o  <->  x  =  (/) )
42, 3sylib 121 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  x  =  (/) )
54fveq2d 5490 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (inl `  x )  =  (inl
`  (/) ) )
65eqeq2d 2177 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  (inl `  x
)  <->  B  =  (inl `  (/) ) ) )
76biimpd 143 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  (inl `  x
)  ->  B  =  (inl `  (/) ) ) )
87rexlimdva 2583 . . . 4  |-  ( ph  ->  ( E. x  e.  A  B  =  (inl
`  x )  ->  B  =  (inl `  (/) ) ) )
98imp 123 . . 3  |-  ( (
ph  /\  E. x  e.  A  B  =  (inl `  x ) )  ->  B  =  (inl
`  (/) ) )
109orcd 723 . 2  |-  ( (
ph  /\  E. x  e.  A  B  =  (inl `  x ) )  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
11 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  1o )  ->  x  e.  1o )
1211, 3sylib 121 . . . . . . . 8  |-  ( (
ph  /\  x  e.  1o )  ->  x  =  (/) )
1312fveq2d 5490 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  ->  (inr `  x )  =  (inr
`  (/) ) )
1413eqeq2d 2177 . . . . . 6  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  (inr `  x
)  <->  B  =  (inr `  (/) ) ) )
1514biimpd 143 . . . . 5  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  (inr `  x
)  ->  B  =  (inr `  (/) ) ) )
1615rexlimdva 2583 . . . 4  |-  ( ph  ->  ( E. x  e.  1o  B  =  (inr
`  x )  ->  B  =  (inr `  (/) ) ) )
1716imp 123 . . 3  |-  ( (
ph  /\  E. x  e.  1o  B  =  (inr
`  x ) )  ->  B  =  (inr
`  (/) ) )
1817olcd 724 . 2  |-  ( (
ph  /\  E. x  e.  1o  B  =  (inr
`  x ) )  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
19 exmidfodomrlemeldju.el . . 3  |-  ( ph  ->  B  e.  ( A 1o ) )
20 djur 7034 . . 3  |-  ( B  e.  ( A 1o )  <-> 
( E. x  e.  A  B  =  (inl
`  x )  \/ 
E. x  e.  1o  B  =  (inr `  x
) ) )
2119, 20sylib 121 . 2  |-  ( ph  ->  ( E. x  e.  A  B  =  (inl
`  x )  \/ 
E. x  e.  1o  B  =  (inr `  x
) ) )
2210, 18, 21mpjaodan 788 1  |-  ( ph  ->  ( B  =  (inl
`  (/) )  \/  B  =  (inr `  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   (/)c0 3409   ` cfv 5188   1oc1o 6377   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  exmidfodomrlemr  7158
  Copyright terms: Public domain W3C validator