ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemeldju Unicode version

Theorem exmidfodomrlemeldju 7266
Description: Lemma for exmidfodomr 7271. A variant of djur 7135. (Contributed by Jim Kingdon, 2-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemeldju.a  |-  ( ph  ->  A  C_  1o )
exmidfodomrlemeldju.el  |-  ( ph  ->  B  e.  ( A 1o ) )
Assertion
Ref Expression
exmidfodomrlemeldju  |-  ( ph  ->  ( B  =  (inl
`  (/) )  \/  B  =  (inr `  (/) ) ) )

Proof of Theorem exmidfodomrlemeldju
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemeldju.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  1o )
21sselda 3183 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  1o )
3 el1o 6495 . . . . . . . . 9  |-  ( x  e.  1o  <->  x  =  (/) )
42, 3sylib 122 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  x  =  (/) )
54fveq2d 5562 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (inl `  x )  =  (inl
`  (/) ) )
65eqeq2d 2208 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  (inl `  x
)  <->  B  =  (inl `  (/) ) ) )
76biimpd 144 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  (inl `  x
)  ->  B  =  (inl `  (/) ) ) )
87rexlimdva 2614 . . . 4  |-  ( ph  ->  ( E. x  e.  A  B  =  (inl
`  x )  ->  B  =  (inl `  (/) ) ) )
98imp 124 . . 3  |-  ( (
ph  /\  E. x  e.  A  B  =  (inl `  x ) )  ->  B  =  (inl
`  (/) ) )
109orcd 734 . 2  |-  ( (
ph  /\  E. x  e.  A  B  =  (inl `  x ) )  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
11 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  1o )  ->  x  e.  1o )
1211, 3sylib 122 . . . . . . . 8  |-  ( (
ph  /\  x  e.  1o )  ->  x  =  (/) )
1312fveq2d 5562 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  ->  (inr `  x )  =  (inr
`  (/) ) )
1413eqeq2d 2208 . . . . . 6  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  (inr `  x
)  <->  B  =  (inr `  (/) ) ) )
1514biimpd 144 . . . . 5  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  (inr `  x
)  ->  B  =  (inr `  (/) ) ) )
1615rexlimdva 2614 . . . 4  |-  ( ph  ->  ( E. x  e.  1o  B  =  (inr
`  x )  ->  B  =  (inr `  (/) ) ) )
1716imp 124 . . 3  |-  ( (
ph  /\  E. x  e.  1o  B  =  (inr
`  x ) )  ->  B  =  (inr
`  (/) ) )
1817olcd 735 . 2  |-  ( (
ph  /\  E. x  e.  1o  B  =  (inr
`  x ) )  ->  ( B  =  (inl `  (/) )  \/  B  =  (inr `  (/) ) ) )
19 exmidfodomrlemeldju.el . . 3  |-  ( ph  ->  B  e.  ( A 1o ) )
20 djur 7135 . . 3  |-  ( B  e.  ( A 1o )  <-> 
( E. x  e.  A  B  =  (inl
`  x )  \/ 
E. x  e.  1o  B  =  (inr `  x
) ) )
2119, 20sylib 122 . 2  |-  ( ph  ->  ( E. x  e.  A  B  =  (inl
`  x )  \/ 
E. x  e.  1o  B  =  (inr `  x
) ) )
2210, 18, 21mpjaodan 799 1  |-  ( ph  ->  ( B  =  (inl
`  (/) )  \/  B  =  (inr `  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   (/)c0 3450   ` cfv 5258   1oc1o 6467   ⊔ cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  exmidfodomrlemr  7269
  Copyright terms: Public domain W3C validator