ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0lt1o Unicode version

Theorem 0lt1o 6408
Description: Ordinal zero is less than ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
0lt1o  |-  (/)  e.  1o

Proof of Theorem 0lt1o
StepHypRef Expression
1 eqid 2165 . 2  |-  (/)  =  (/)
2 el1o 6405 . 2  |-  ( (/)  e.  1o  <->  (/)  =  (/) )
31, 2mpbir 145 1  |-  (/)  e.  1o
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   (/)c0 3409   1oc1o 6377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-suc 4349  df-1o 6384
This theorem is referenced by:  nnaordex  6495  1domsn  6785  snexxph  6915  difinfsnlem  7064  difinfsn  7065  0ct  7072  ctmlemr  7073  ctssdclemn0  7075  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  1lt2pi  7281  archnqq  7358  prarloclemarch2  7360  pwle2  13878
  Copyright terms: Public domain W3C validator