ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemreseldju Unicode version

Theorem exmidfodomrlemreseldju 7056
Description: Lemma for exmidfodomrlemrALT 7059. A variant of eldju 6953. (Contributed by Jim Kingdon, 9-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemreseldju.a  |-  ( ph  ->  A  C_  1o )
exmidfodomrlemreseldju.el  |-  ( ph  ->  B  e.  ( A 1o ) )
Assertion
Ref Expression
exmidfodomrlemreseldju  |-  ( ph  ->  ( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )

Proof of Theorem exmidfodomrlemreseldju
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemreseldju.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  1o )
21sselda 3097 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  1o )
3 el1o 6334 . . . . . . . . . 10  |-  ( x  e.  1o  <->  x  =  (/) )
42, 3sylib 121 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  =  (/) )
54fveq2d 5425 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
(inl  |`  A ) `  x )  =  ( (inl  |`  A ) `  (/) ) )
65eqeq2d 2151 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  <->  B  =  (
(inl  |`  A ) `  (/) ) ) )
7 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
84, 7eqeltrrd 2217 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (/)  e.  A
)
98biantrurd 303 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  (/) )  <->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
106, 9bitrd 187 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  <->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
1110biimpd 143 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  ->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
1211rexlimdva 2549 . . . 4  |-  ( ph  ->  ( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  ->  ( (/) 
e.  A  /\  B  =  ( (inl  |`  A ) `
 (/) ) ) ) )
1312imp 123 . . 3  |-  ( (
ph  /\  E. x  e.  A  B  =  ( (inl  |`  A ) `
 x ) )  ->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) )
1413orcd 722 . 2  |-  ( (
ph  /\  E. x  e.  A  B  =  ( (inl  |`  A ) `
 x ) )  ->  ( ( (/)  e.  A  /\  B  =  ( (inl  |`  A ) `
 (/) ) )  \/  B  =  ( (inr  |`  1o ) `  (/) ) ) )
15 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  1o )  ->  x  e.  1o )
1615, 3sylib 121 . . . . . . . 8  |-  ( (
ph  /\  x  e.  1o )  ->  x  =  (/) )
1716fveq2d 5425 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  ->  ( (inr  |`  1o ) `  x
)  =  ( (inr  |`  1o ) `  (/) ) )
1817eqeq2d 2151 . . . . . 6  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  ( (inr  |`  1o ) `
 x )  <->  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
1918biimpd 143 . . . . 5  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  ( (inr  |`  1o ) `
 x )  ->  B  =  ( (inr  |`  1o ) `  (/) ) ) )
2019rexlimdva 2549 . . . 4  |-  ( ph  ->  ( E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x )  ->  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
2120imp 123 . . 3  |-  ( (
ph  /\  E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x ) )  ->  B  =  ( (inr  |`  1o ) `  (/) ) )
2221olcd 723 . 2  |-  ( (
ph  /\  E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x ) )  -> 
( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
23 exmidfodomrlemreseldju.el . . 3  |-  ( ph  ->  B  e.  ( A 1o ) )
24 eldju 6953 . . 3  |-  ( B  e.  ( A 1o )  <-> 
( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  1o  B  =  ( (inr  |`  1o ) `
 x ) ) )
2523, 24sylib 121 . 2  |-  ( ph  ->  ( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  1o  B  =  ( (inr  |`  1o ) `
 x ) ) )
2614, 22, 25mpjaodan 787 1  |-  ( ph  ->  ( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   (/)c0 3363    |` cres 4541   ` cfv 5123   1oc1o 6306   ⊔ cdju 6922  inlcinl 6930  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  exmidfodomrlemrALT  7059
  Copyright terms: Public domain W3C validator