ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemreseldju Unicode version

Theorem exmidfodomrlemreseldju 7202
Description: Lemma for exmidfodomrlemrALT 7205. A variant of eldju 7070. (Contributed by Jim Kingdon, 9-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemreseldju.a  |-  ( ph  ->  A  C_  1o )
exmidfodomrlemreseldju.el  |-  ( ph  ->  B  e.  ( A 1o ) )
Assertion
Ref Expression
exmidfodomrlemreseldju  |-  ( ph  ->  ( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )

Proof of Theorem exmidfodomrlemreseldju
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemreseldju.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  1o )
21sselda 3157 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  1o )
3 el1o 6441 . . . . . . . . . 10  |-  ( x  e.  1o  <->  x  =  (/) )
42, 3sylib 122 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  =  (/) )
54fveq2d 5521 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
(inl  |`  A ) `  x )  =  ( (inl  |`  A ) `  (/) ) )
65eqeq2d 2189 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  <->  B  =  (
(inl  |`  A ) `  (/) ) ) )
7 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
84, 7eqeltrrd 2255 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (/)  e.  A
)
98biantrurd 305 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  (/) )  <->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
106, 9bitrd 188 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  <->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
1110biimpd 144 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  ->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
1211rexlimdva 2594 . . . 4  |-  ( ph  ->  ( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  ->  ( (/) 
e.  A  /\  B  =  ( (inl  |`  A ) `
 (/) ) ) ) )
1312imp 124 . . 3  |-  ( (
ph  /\  E. x  e.  A  B  =  ( (inl  |`  A ) `
 x ) )  ->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) )
1413orcd 733 . 2  |-  ( (
ph  /\  E. x  e.  A  B  =  ( (inl  |`  A ) `
 x ) )  ->  ( ( (/)  e.  A  /\  B  =  ( (inl  |`  A ) `
 (/) ) )  \/  B  =  ( (inr  |`  1o ) `  (/) ) ) )
15 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  1o )  ->  x  e.  1o )
1615, 3sylib 122 . . . . . . . 8  |-  ( (
ph  /\  x  e.  1o )  ->  x  =  (/) )
1716fveq2d 5521 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  ->  ( (inr  |`  1o ) `  x
)  =  ( (inr  |`  1o ) `  (/) ) )
1817eqeq2d 2189 . . . . . 6  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  ( (inr  |`  1o ) `
 x )  <->  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
1918biimpd 144 . . . . 5  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  ( (inr  |`  1o ) `
 x )  ->  B  =  ( (inr  |`  1o ) `  (/) ) ) )
2019rexlimdva 2594 . . . 4  |-  ( ph  ->  ( E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x )  ->  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
2120imp 124 . . 3  |-  ( (
ph  /\  E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x ) )  ->  B  =  ( (inr  |`  1o ) `  (/) ) )
2221olcd 734 . 2  |-  ( (
ph  /\  E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x ) )  -> 
( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
23 exmidfodomrlemreseldju.el . . 3  |-  ( ph  ->  B  e.  ( A 1o ) )
24 eldju 7070 . . 3  |-  ( B  e.  ( A 1o )  <-> 
( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  1o  B  =  ( (inr  |`  1o ) `
 x ) ) )
2523, 24sylib 122 . 2  |-  ( ph  ->  ( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  1o  B  =  ( (inr  |`  1o ) `
 x ) ) )
2614, 22, 25mpjaodan 798 1  |-  ( ph  ->  ( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   E.wrex 2456    C_ wss 3131   (/)c0 3424    |` cres 4630   ` cfv 5218   1oc1o 6413   ⊔ cdju 7039  inlcinl 7047  inrcinr 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6144  df-2nd 6145  df-1o 6420  df-dju 7040  df-inl 7049  df-inr 7050
This theorem is referenced by:  exmidfodomrlemrALT  7205
  Copyright terms: Public domain W3C validator