| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidfodomrlemreseldju | Unicode version | ||
| Description: Lemma for exmidfodomrlemrALT 7342. A variant of eldju 7196. (Contributed by Jim Kingdon, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| exmidfodomrlemreseldju.a |
|
| exmidfodomrlemreseldju.el |
|
| Ref | Expression |
|---|---|
| exmidfodomrlemreseldju |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidfodomrlemreseldju.a |
. . . . . . . . . . 11
| |
| 2 | 1 | sselda 3201 |
. . . . . . . . . 10
|
| 3 | el1o 6546 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | sylib 122 |
. . . . . . . . 9
|
| 5 | 4 | fveq2d 5603 |
. . . . . . . 8
|
| 6 | 5 | eqeq2d 2219 |
. . . . . . 7
|
| 7 | simpr 110 |
. . . . . . . . 9
| |
| 8 | 4, 7 | eqeltrrd 2285 |
. . . . . . . 8
|
| 9 | 8 | biantrurd 305 |
. . . . . . 7
|
| 10 | 6, 9 | bitrd 188 |
. . . . . 6
|
| 11 | 10 | biimpd 144 |
. . . . 5
|
| 12 | 11 | rexlimdva 2625 |
. . . 4
|
| 13 | 12 | imp 124 |
. . 3
|
| 14 | 13 | orcd 735 |
. 2
|
| 15 | simpr 110 |
. . . . . . . . 9
| |
| 16 | 15, 3 | sylib 122 |
. . . . . . . 8
|
| 17 | 16 | fveq2d 5603 |
. . . . . . 7
|
| 18 | 17 | eqeq2d 2219 |
. . . . . 6
|
| 19 | 18 | biimpd 144 |
. . . . 5
|
| 20 | 19 | rexlimdva 2625 |
. . . 4
|
| 21 | 20 | imp 124 |
. . 3
|
| 22 | 21 | olcd 736 |
. 2
|
| 23 | exmidfodomrlemreseldju.el |
. . 3
| |
| 24 | eldju 7196 |
. . 3
| |
| 25 | 23, 24 | sylib 122 |
. 2
|
| 26 | 14, 22, 25 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: exmidfodomrlemrALT 7342 |
| Copyright terms: Public domain | W3C validator |