ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemreseldju Unicode version

Theorem exmidfodomrlemreseldju 7378
Description: Lemma for exmidfodomrlemrALT 7381. A variant of eldju 7235. (Contributed by Jim Kingdon, 9-Jul-2022.)
Hypotheses
Ref Expression
exmidfodomrlemreseldju.a  |-  ( ph  ->  A  C_  1o )
exmidfodomrlemreseldju.el  |-  ( ph  ->  B  e.  ( A 1o ) )
Assertion
Ref Expression
exmidfodomrlemreseldju  |-  ( ph  ->  ( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )

Proof of Theorem exmidfodomrlemreseldju
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 exmidfodomrlemreseldju.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  1o )
21sselda 3224 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  1o )
3 el1o 6583 . . . . . . . . . 10  |-  ( x  e.  1o  <->  x  =  (/) )
42, 3sylib 122 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  =  (/) )
54fveq2d 5631 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
(inl  |`  A ) `  x )  =  ( (inl  |`  A ) `  (/) ) )
65eqeq2d 2241 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  <->  B  =  (
(inl  |`  A ) `  (/) ) ) )
7 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
84, 7eqeltrrd 2307 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (/)  e.  A
)
98biantrurd 305 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  (/) )  <->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
106, 9bitrd 188 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  <->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
1110biimpd 144 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  ( (inl  |`  A ) `  x
)  ->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) ) )
1211rexlimdva 2648 . . . 4  |-  ( ph  ->  ( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  ->  ( (/) 
e.  A  /\  B  =  ( (inl  |`  A ) `
 (/) ) ) ) )
1312imp 124 . . 3  |-  ( (
ph  /\  E. x  e.  A  B  =  ( (inl  |`  A ) `
 x ) )  ->  ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) ) )
1413orcd 738 . 2  |-  ( (
ph  /\  E. x  e.  A  B  =  ( (inl  |`  A ) `
 x ) )  ->  ( ( (/)  e.  A  /\  B  =  ( (inl  |`  A ) `
 (/) ) )  \/  B  =  ( (inr  |`  1o ) `  (/) ) ) )
15 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  1o )  ->  x  e.  1o )
1615, 3sylib 122 . . . . . . . 8  |-  ( (
ph  /\  x  e.  1o )  ->  x  =  (/) )
1716fveq2d 5631 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  ->  ( (inr  |`  1o ) `  x
)  =  ( (inr  |`  1o ) `  (/) ) )
1817eqeq2d 2241 . . . . . 6  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  ( (inr  |`  1o ) `
 x )  <->  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
1918biimpd 144 . . . . 5  |-  ( (
ph  /\  x  e.  1o )  ->  ( B  =  ( (inr  |`  1o ) `
 x )  ->  B  =  ( (inr  |`  1o ) `  (/) ) ) )
2019rexlimdva 2648 . . . 4  |-  ( ph  ->  ( E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x )  ->  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
2120imp 124 . . 3  |-  ( (
ph  /\  E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x ) )  ->  B  =  ( (inr  |`  1o ) `  (/) ) )
2221olcd 739 . 2  |-  ( (
ph  /\  E. x  e.  1o  B  =  ( (inr  |`  1o ) `  x ) )  -> 
( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
23 exmidfodomrlemreseldju.el . . 3  |-  ( ph  ->  B  e.  ( A 1o ) )
24 eldju 7235 . . 3  |-  ( B  e.  ( A 1o )  <-> 
( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  1o  B  =  ( (inr  |`  1o ) `
 x ) ) )
2523, 24sylib 122 . 2  |-  ( ph  ->  ( E. x  e.  A  B  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  1o  B  =  ( (inr  |`  1o ) `
 x ) ) )
2614, 22, 25mpjaodan 803 1  |-  ( ph  ->  ( ( (/)  e.  A  /\  B  =  (
(inl  |`  A ) `  (/) ) )  \/  B  =  ( (inr  |`  1o ) `
 (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   E.wrex 2509    C_ wss 3197   (/)c0 3491    |` cres 4721   ` cfv 5318   1oc1o 6555   ⊔ cdju 7204  inlcinl 7212  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inl 7214  df-inr 7215
This theorem is referenced by:  exmidfodomrlemrALT  7381
  Copyright terms: Public domain W3C validator