Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidfodomrlemreseldju | Unicode version |
Description: Lemma for exmidfodomrlemrALT 7121. A variant of eldju 7002. (Contributed by Jim Kingdon, 9-Jul-2022.) |
Ref | Expression |
---|---|
exmidfodomrlemreseldju.a | |
exmidfodomrlemreseldju.el | ⊔ |
Ref | Expression |
---|---|
exmidfodomrlemreseldju | inl inr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidfodomrlemreseldju.a | . . . . . . . . . . 11 | |
2 | 1 | sselda 3128 | . . . . . . . . . 10 |
3 | el1o 6378 | . . . . . . . . . 10 | |
4 | 2, 3 | sylib 121 | . . . . . . . . 9 |
5 | 4 | fveq2d 5469 | . . . . . . . 8 inl inl |
6 | 5 | eqeq2d 2169 | . . . . . . 7 inl inl |
7 | simpr 109 | . . . . . . . . 9 | |
8 | 4, 7 | eqeltrrd 2235 | . . . . . . . 8 |
9 | 8 | biantrurd 303 | . . . . . . 7 inl inl |
10 | 6, 9 | bitrd 187 | . . . . . 6 inl inl |
11 | 10 | biimpd 143 | . . . . 5 inl inl |
12 | 11 | rexlimdva 2574 | . . . 4 inl inl |
13 | 12 | imp 123 | . . 3 inl inl |
14 | 13 | orcd 723 | . 2 inl inl inr |
15 | simpr 109 | . . . . . . . . 9 | |
16 | 15, 3 | sylib 121 | . . . . . . . 8 |
17 | 16 | fveq2d 5469 | . . . . . . 7 inr inr |
18 | 17 | eqeq2d 2169 | . . . . . 6 inr inr |
19 | 18 | biimpd 143 | . . . . 5 inr inr |
20 | 19 | rexlimdva 2574 | . . . 4 inr inr |
21 | 20 | imp 123 | . . 3 inr inr |
22 | 21 | olcd 724 | . 2 inr inl inr |
23 | exmidfodomrlemreseldju.el | . . 3 ⊔ | |
24 | eldju 7002 | . . 3 ⊔ inl inr | |
25 | 23, 24 | sylib 121 | . 2 inl inr |
26 | 14, 22, 25 | mpjaodan 788 | 1 inl inr |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1335 wcel 2128 wrex 2436 wss 3102 c0 3394 cres 4585 cfv 5167 c1o 6350 ⊔ cdju 6971 inlcinl 6979 inrcinr 6980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-1st 6082 df-2nd 6083 df-1o 6357 df-dju 6972 df-inl 6981 df-inr 6982 |
This theorem is referenced by: exmidfodomrlemrALT 7121 |
Copyright terms: Public domain | W3C validator |