ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressn Unicode version

Theorem ressn 5126
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
ressn  |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B } ) )

Proof of Theorem ressn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4894 . 2  |-  Rel  ( A  |`  { B }
)
2 relxp 4695 . 2  |-  Rel  ( { B }  X.  ( A " { B }
) )
3 ancom 264 . . . 4  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  { B } )  <-> 
( x  e.  { B }  /\  <. x ,  y >.  e.  A
) )
4 vex 2715 . . . . . . 7  |-  x  e. 
_V
5 vex 2715 . . . . . . 7  |-  y  e. 
_V
64, 5elimasn 4953 . . . . . 6  |-  ( y  e.  ( A " { x } )  <->  <. x ,  y >.  e.  A )
7 elsni 3578 . . . . . . . . 9  |-  ( x  e.  { B }  ->  x  =  B )
87sneqd 3573 . . . . . . . 8  |-  ( x  e.  { B }  ->  { x }  =  { B } )
98imaeq2d 4928 . . . . . . 7  |-  ( x  e.  { B }  ->  ( A " {
x } )  =  ( A " { B } ) )
109eleq2d 2227 . . . . . 6  |-  ( x  e.  { B }  ->  ( y  e.  ( A " { x } )  <->  y  e.  ( A " { B } ) ) )
116, 10bitr3id 193 . . . . 5  |-  ( x  e.  { B }  ->  ( <. x ,  y
>.  e.  A  <->  y  e.  ( A " { B } ) ) )
1211pm5.32i 450 . . . 4  |-  ( ( x  e.  { B }  /\  <. x ,  y
>.  e.  A )  <->  ( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
133, 12bitri 183 . . 3  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  { B } )  <-> 
( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
145opelres 4871 . . 3  |-  ( <.
x ,  y >.  e.  ( A  |`  { B } )  <->  ( <. x ,  y >.  e.  A  /\  x  e.  { B } ) )
15 opelxp 4616 . . 3  |-  ( <.
x ,  y >.  e.  ( { B }  X.  ( A " { B } ) )  <->  ( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
1613, 14, 153bitr4i 211 . 2  |-  ( <.
x ,  y >.  e.  ( A  |`  { B } )  <->  <. x ,  y >.  e.  ( { B }  X.  ( A " { B }
) ) )
171, 2, 16eqrelriiv 4680 1  |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    e. wcel 2128   {csn 3560   <.cop 3563    X. cxp 4584    |` cres 4588   "cima 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4592  df-rel 4593  df-cnv 4594  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator