ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressn Unicode version

Theorem ressn 5224
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
ressn  |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B } ) )

Proof of Theorem ressn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4988 . 2  |-  Rel  ( A  |`  { B }
)
2 relxp 4785 . 2  |-  Rel  ( { B }  X.  ( A " { B }
) )
3 ancom 266 . . . 4  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  { B } )  <-> 
( x  e.  { B }  /\  <. x ,  y >.  e.  A
) )
4 vex 2775 . . . . . . 7  |-  x  e. 
_V
5 vex 2775 . . . . . . 7  |-  y  e. 
_V
64, 5elimasn 5050 . . . . . 6  |-  ( y  e.  ( A " { x } )  <->  <. x ,  y >.  e.  A )
7 elsni 3651 . . . . . . . . 9  |-  ( x  e.  { B }  ->  x  =  B )
87sneqd 3646 . . . . . . . 8  |-  ( x  e.  { B }  ->  { x }  =  { B } )
98imaeq2d 5023 . . . . . . 7  |-  ( x  e.  { B }  ->  ( A " {
x } )  =  ( A " { B } ) )
109eleq2d 2275 . . . . . 6  |-  ( x  e.  { B }  ->  ( y  e.  ( A " { x } )  <->  y  e.  ( A " { B } ) ) )
116, 10bitr3id 194 . . . . 5  |-  ( x  e.  { B }  ->  ( <. x ,  y
>.  e.  A  <->  y  e.  ( A " { B } ) ) )
1211pm5.32i 454 . . . 4  |-  ( ( x  e.  { B }  /\  <. x ,  y
>.  e.  A )  <->  ( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
133, 12bitri 184 . . 3  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  { B } )  <-> 
( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
145opelres 4965 . . 3  |-  ( <.
x ,  y >.  e.  ( A  |`  { B } )  <->  ( <. x ,  y >.  e.  A  /\  x  e.  { B } ) )
15 opelxp 4706 . . 3  |-  ( <.
x ,  y >.  e.  ( { B }  X.  ( A " { B } ) )  <->  ( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
1613, 14, 153bitr4i 212 . 2  |-  ( <.
x ,  y >.  e.  ( A  |`  { B } )  <->  <. x ,  y >.  e.  ( { B }  X.  ( A " { B }
) ) )
171, 2, 16eqrelriiv 4770 1  |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   {csn 3633   <.cop 3636    X. cxp 4674    |` cres 4678   "cima 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator