ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressn Unicode version

Theorem ressn 5206
Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
ressn  |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B } ) )

Proof of Theorem ressn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4970 . 2  |-  Rel  ( A  |`  { B }
)
2 relxp 4768 . 2  |-  Rel  ( { B }  X.  ( A " { B }
) )
3 ancom 266 . . . 4  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  { B } )  <-> 
( x  e.  { B }  /\  <. x ,  y >.  e.  A
) )
4 vex 2763 . . . . . . 7  |-  x  e. 
_V
5 vex 2763 . . . . . . 7  |-  y  e. 
_V
64, 5elimasn 5032 . . . . . 6  |-  ( y  e.  ( A " { x } )  <->  <. x ,  y >.  e.  A )
7 elsni 3636 . . . . . . . . 9  |-  ( x  e.  { B }  ->  x  =  B )
87sneqd 3631 . . . . . . . 8  |-  ( x  e.  { B }  ->  { x }  =  { B } )
98imaeq2d 5005 . . . . . . 7  |-  ( x  e.  { B }  ->  ( A " {
x } )  =  ( A " { B } ) )
109eleq2d 2263 . . . . . 6  |-  ( x  e.  { B }  ->  ( y  e.  ( A " { x } )  <->  y  e.  ( A " { B } ) ) )
116, 10bitr3id 194 . . . . 5  |-  ( x  e.  { B }  ->  ( <. x ,  y
>.  e.  A  <->  y  e.  ( A " { B } ) ) )
1211pm5.32i 454 . . . 4  |-  ( ( x  e.  { B }  /\  <. x ,  y
>.  e.  A )  <->  ( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
133, 12bitri 184 . . 3  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  { B } )  <-> 
( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
145opelres 4947 . . 3  |-  ( <.
x ,  y >.  e.  ( A  |`  { B } )  <->  ( <. x ,  y >.  e.  A  /\  x  e.  { B } ) )
15 opelxp 4689 . . 3  |-  ( <.
x ,  y >.  e.  ( { B }  X.  ( A " { B } ) )  <->  ( x  e.  { B }  /\  y  e.  ( A " { B } ) ) )
1613, 14, 153bitr4i 212 . 2  |-  ( <.
x ,  y >.  e.  ( A  |`  { B } )  <->  <. x ,  y >.  e.  ( { B }  X.  ( A " { B }
) ) )
171, 2, 16eqrelriiv 4753 1  |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {csn 3618   <.cop 3621    X. cxp 4657    |` cres 4661   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator