Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elimasn | GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
elimasn.1 | ⊢ 𝐵 ∈ V |
elimasn.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasn.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | breq2 3986 | . . 3 ⊢ (𝑥 = 𝐶 → (𝐵𝐴𝑥 ↔ 𝐵𝐴𝐶)) | |
3 | elimasn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | imasng 4969 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥} |
6 | 1, 2, 5 | elab2 2874 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) |
7 | df-br 3983 | . 2 ⊢ (𝐵𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | |
8 | 6, 7 | bitri 183 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 Vcvv 2726 {csn 3576 〈cop 3579 class class class wbr 3982 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: elimasng 4972 dfco2 5103 dfco2a 5104 ressn 5144 |
Copyright terms: Public domain | W3C validator |