ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasn GIF version

Theorem elimasn 5049
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
elimasn.1 𝐵 ∈ V
elimasn.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)

Proof of Theorem elimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimasn.2 . . 3 𝐶 ∈ V
2 breq2 4048 . . 3 (𝑥 = 𝐶 → (𝐵𝐴𝑥𝐵𝐴𝐶))
3 elimasn.1 . . . 4 𝐵 ∈ V
4 imasng 5047 . . . 4 (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
53, 4ax-mp 5 . . 3 (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥}
61, 2, 5elab2 2921 . 2 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)
7 df-br 4045 . 2 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
86, 7bitri 184 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2176  {cab 2191  Vcvv 2772  {csn 3633  cop 3636   class class class wbr 4044  cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  elimasng  5050  dfco2  5182  dfco2a  5183  ressn  5223
  Copyright terms: Public domain W3C validator