| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elimasn | GIF version | ||
| Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| elimasn.1 | ⊢ 𝐵 ∈ V |
| elimasn.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasn.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | breq2 4048 | . . 3 ⊢ (𝑥 = 𝐶 → (𝐵𝐴𝑥 ↔ 𝐵𝐴𝐶)) | |
| 3 | elimasn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 4 | imasng 5047 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥} |
| 6 | 1, 2, 5 | elab2 2921 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) |
| 7 | df-br 4045 | . 2 ⊢ (𝐵𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | |
| 8 | 6, 7 | bitri 184 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2176 {cab 2191 Vcvv 2772 {csn 3633 〈cop 3636 class class class wbr 4044 “ cima 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 |
| This theorem is referenced by: elimasng 5050 dfco2 5182 dfco2a 5183 ressn 5223 |
| Copyright terms: Public domain | W3C validator |