Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elimasn | GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
elimasn.1 | ⊢ 𝐵 ∈ V |
elimasn.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elimasn | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasn.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | breq2 3993 | . . 3 ⊢ (𝑥 = 𝐶 → (𝐵𝐴𝑥 ↔ 𝐵𝐴𝐶)) | |
3 | elimasn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | imasng 4976 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥} |
6 | 1, 2, 5 | elab2 2878 | . 2 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) |
7 | df-br 3990 | . 2 ⊢ (𝐵𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | |
8 | 6, 7 | bitri 183 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 {csn 3583 〈cop 3586 class class class wbr 3989 “ cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: elimasng 4979 dfco2 5110 dfco2a 5111 ressn 5151 |
Copyright terms: Public domain | W3C validator |