ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasn GIF version

Theorem elimasn 5032
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
elimasn.1 𝐵 ∈ V
elimasn.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)

Proof of Theorem elimasn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimasn.2 . . 3 𝐶 ∈ V
2 breq2 4033 . . 3 (𝑥 = 𝐶 → (𝐵𝐴𝑥𝐵𝐴𝐶))
3 elimasn.1 . . . 4 𝐵 ∈ V
4 imasng 5030 . . . 4 (𝐵 ∈ V → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
53, 4ax-mp 5 . . 3 (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥}
61, 2, 5elab2 2908 . 2 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)
7 df-br 4030 . 2 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
86, 7bitri 184 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2164  {cab 2179  Vcvv 2760  {csn 3618  cop 3621   class class class wbr 4029  cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  elimasng  5033  dfco2  5165  dfco2a  5166  ressn  5206
  Copyright terms: Public domain W3C validator