ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnei Unicode version

Theorem elnei 13232
Description: A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
elnei  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  P  e.  N
)

Proof of Theorem elnei
StepHypRef Expression
1 ssnei 13231 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  { P }  C_  N )
213adant2 1016 . 2  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  { P }  C_  N )
3 snssg 3723 . . 3  |-  ( P  e.  A  ->  ( P  e.  N  <->  { P }  C_  N ) )
433ad2ant2 1019 . 2  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  ( P  e.  N  <->  { P }  C_  N ) )
52, 4mpbird 167 1  |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  P  e.  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 978    e. wcel 2146    C_ wss 3127   {csn 3589   ` cfv 5208   Topctop 13075   neicnei 13218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-top 13076  df-nei 13219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator