ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnei GIF version

Theorem elnei 13691
Description: A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
elnei ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃})) β†’ 𝑃 ∈ 𝑁)

Proof of Theorem elnei
StepHypRef Expression
1 ssnei 13690 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃})) β†’ {𝑃} βŠ† 𝑁)
213adant2 1016 . 2 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃})) β†’ {𝑃} βŠ† 𝑁)
3 snssg 3728 . . 3 (𝑃 ∈ 𝐴 β†’ (𝑃 ∈ 𝑁 ↔ {𝑃} βŠ† 𝑁))
433ad2ant2 1019 . 2 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃})) β†’ (𝑃 ∈ 𝑁 ↔ {𝑃} βŠ† 𝑁))
52, 4mpbird 167 1 ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃})) β†’ 𝑃 ∈ 𝑁)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   ∧ w3a 978   ∈ wcel 2148   βŠ† wss 3131  {csn 3594  β€˜cfv 5218  Topctop 13536  neicnei 13677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-top 13537  df-nei 13678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator