ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnei GIF version

Theorem elnei 14388
Description: A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
Assertion
Ref Expression
elnei ((𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃𝑁)

Proof of Theorem elnei
StepHypRef Expression
1 ssnei 14387 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → {𝑃} ⊆ 𝑁)
213adant2 1018 . 2 ((𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → {𝑃} ⊆ 𝑁)
3 snssg 3756 . . 3 (𝑃𝐴 → (𝑃𝑁 ↔ {𝑃} ⊆ 𝑁))
433ad2ant2 1021 . 2 ((𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑃𝑁 ↔ {𝑃} ⊆ 𝑁))
52, 4mpbird 167 1 ((𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980  wcel 2167  wss 3157  {csn 3622  cfv 5258  Topctop 14233  neicnei 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-top 14234  df-nei 14375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator