ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txopn Unicode version

Theorem txopn 13059
Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txopn  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ( R 
tX  S ) )

Proof of Theorem txopn
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . . . 6  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
21txbasex 13051 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e. 
_V )
3 bastg 12855 . . . . 5  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  _V  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  C_  ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
42, 3syl 14 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  C_  ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
54adantr 274 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  C_  ( topGen `
 ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
6 eqid 2170 . . . . . 6  |-  ( A  X.  B )  =  ( A  X.  B
)
7 xpeq1 4625 . . . . . . . 8  |-  ( u  =  A  ->  (
u  X.  v )  =  ( A  X.  v ) )
87eqeq2d 2182 . . . . . . 7  |-  ( u  =  A  ->  (
( A  X.  B
)  =  ( u  X.  v )  <->  ( A  X.  B )  =  ( A  X.  v ) ) )
9 xpeq2 4626 . . . . . . . 8  |-  ( v  =  B  ->  ( A  X.  v )  =  ( A  X.  B
) )
109eqeq2d 2182 . . . . . . 7  |-  ( v  =  B  ->  (
( A  X.  B
)  =  ( A  X.  v )  <->  ( A  X.  B )  =  ( A  X.  B ) ) )
118, 10rspc2ev 2849 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S  /\  ( A  X.  B
)  =  ( A  X.  B ) )  ->  E. u  e.  R  E. v  e.  S  ( A  X.  B
)  =  ( u  X.  v ) )
126, 11mp3an3 1321 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  ->  E. u  e.  R  E. v  e.  S  ( A  X.  B
)  =  ( u  X.  v ) )
13 xpexg 4725 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A  X.  B
)  e.  _V )
14 eqid 2170 . . . . . . 7  |-  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  =  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )
1514elrnmpog 5965 . . . . . 6  |-  ( ( A  X.  B )  e.  _V  ->  (
( A  X.  B
)  e.  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  <->  E. u  e.  R  E. v  e.  S  ( A  X.  B
)  =  ( u  X.  v ) ) )
1613, 15syl 14 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( A  X.  B )  e.  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  <->  E. u  e.  R  E. v  e.  S  ( A  X.  B )  =  ( u  X.  v ) ) )
1712, 16mpbird 166 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A  X.  B
)  e.  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) ) )
1817adantl 275 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) ) )
195, 18sseldd 3148 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
201txval 13049 . . 3  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
2120adantr 274 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( R  tX  S
)  =  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
2219, 21eleqtrrd 2250 1  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ( R 
tX  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   _Vcvv 2730    C_ wss 3121    X. cxp 4609   ran crn 4612   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   topGenctg 12594    tX ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-topgen 12600  df-tx 13047
This theorem is referenced by:  txbasval  13061  neitx  13062  tx1cn  13063  tx2cn  13064  txlm  13073
  Copyright terms: Public domain W3C validator