ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endomtr Unicode version

Theorem endomtr 6942
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
endomtr  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem endomtr
StepHypRef Expression
1 endom 6914 . 2  |-  ( A 
~~  B  ->  A  ~<_  B )
2 domtr 6937 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan 283 1  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   class class class wbr 4083    ~~ cen 6885    ~<_ cdom 6886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-f1o 5325  df-en 6888  df-dom 6889
This theorem is referenced by:  cnvct  6962  xpdom1g  6992  xpdom3m  6993  domen1  7003  mapdom1g  7008  phplem4dom  7023  phpm  7027  fict  7030  fisbth  7045  fientri3  7077  difinfsn  7267  pw1dom2  7412  qnnen  13002  nninfdc  13024  isnzr2  14148
  Copyright terms: Public domain W3C validator