| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endomtr | Unicode version | ||
| Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| endomtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 6831 |
. 2
| |
| 2 | domtr 6853 |
. 2
| |
| 3 | 1, 2 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-f1o 5266 df-en 6809 df-dom 6810 |
| This theorem is referenced by: cnvct 6877 xpdom1g 6901 xpdom3m 6902 domen1 6912 mapdom1g 6917 phplem4dom 6932 phpm 6935 fict 6938 fisbth 6953 fientri3 6985 difinfsn 7175 pw1dom2 7310 qnnen 12673 nninfdc 12695 isnzr2 13816 |
| Copyright terms: Public domain | W3C validator |