Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > endomtr | Unicode version |
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
endomtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 6725 | . 2 | |
2 | domtr 6747 | . 2 | |
3 | 1, 2 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 class class class wbr 3981 cen 6700 cdom 6701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-f1o 5194 df-en 6703 df-dom 6704 |
This theorem is referenced by: cnvct 6771 xpdom1g 6795 xpdom3m 6796 domen1 6804 mapdom1g 6809 phplem4dom 6824 phpm 6827 fict 6830 fisbth 6845 fientri3 6876 difinfsn 7061 pw1dom2 7179 qnnen 12360 nninfdc 12382 |
Copyright terms: Public domain | W3C validator |