ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endomtr Unicode version

Theorem endomtr 6752
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
endomtr  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem endomtr
StepHypRef Expression
1 endom 6725 . 2  |-  ( A 
~~  B  ->  A  ~<_  B )
2 domtr 6747 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan 281 1  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   class class class wbr 3981    ~~ cen 6700    ~<_ cdom 6701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-f1o 5194  df-en 6703  df-dom 6704
This theorem is referenced by:  cnvct  6771  xpdom1g  6795  xpdom3m  6796  domen1  6804  mapdom1g  6809  phplem4dom  6824  phpm  6827  fict  6830  fisbth  6845  fientri3  6876  difinfsn  7061  pw1dom2  7179  qnnen  12360  nninfdc  12382
  Copyright terms: Public domain W3C validator