ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endomtr Unicode version

Theorem endomtr 6790
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
endomtr  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem endomtr
StepHypRef Expression
1 endom 6763 . 2  |-  ( A 
~~  B  ->  A  ~<_  B )
2 domtr 6785 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan 283 1  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   class class class wbr 4004    ~~ cen 6738    ~<_ cdom 6739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-f1o 5224  df-en 6741  df-dom 6742
This theorem is referenced by:  cnvct  6809  xpdom1g  6833  xpdom3m  6834  domen1  6842  mapdom1g  6847  phplem4dom  6862  phpm  6865  fict  6868  fisbth  6883  fientri3  6914  difinfsn  7099  pw1dom2  7226  qnnen  12432  nninfdc  12454
  Copyright terms: Public domain W3C validator