ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endomtr Unicode version

Theorem endomtr 6737
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
endomtr  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem endomtr
StepHypRef Expression
1 endom 6710 . 2  |-  ( A 
~~  B  ->  A  ~<_  B )
2 domtr 6732 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan 281 1  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   class class class wbr 3967    ~~ cen 6685    ~<_ cdom 6686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-f1o 5179  df-en 6688  df-dom 6689
This theorem is referenced by:  cnvct  6756  xpdom1g  6780  xpdom3m  6781  domen1  6789  mapdom1g  6794  phplem4dom  6809  phpm  6812  fict  6815  fisbth  6830  fientri3  6861  difinfsn  7046  pw1dom2  7164  qnnen  12230  nninfdc  12254
  Copyright terms: Public domain W3C validator