ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endomtr Unicode version

Theorem endomtr 6459
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
endomtr  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )

Proof of Theorem endomtr
StepHypRef Expression
1 endom 6432 . 2  |-  ( A 
~~  B  ->  A  ~<_  B )
2 domtr 6454 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan 277 1  |-  ( ( A  ~~  B  /\  B  ~<_  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   class class class wbr 3820    ~~ cen 6407    ~<_ cdom 6408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-f1o 4988  df-en 6410  df-dom 6411
This theorem is referenced by:  cnvct  6478  xpdom1g  6501  xpdom3m  6502  domen1  6510  mapdom1g  6515  phplem4dom  6530  phpm  6533  fict  6536  fisbth  6551  fientri3  6577  pw1dom2  11327
  Copyright terms: Public domain W3C validator