ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrefg Unicode version

Theorem enrefg 6818
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
enrefg  |-  ( A  e.  V  ->  A  ~~  A )

Proof of Theorem enrefg
StepHypRef Expression
1 f1oi 5538 . . 3  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 f1oen2g 6809 . . 3  |-  ( ( A  e.  V  /\  A  e.  V  /\  (  _I  |`  A ) : A -1-1-onto-> A )  ->  A  ~~  A )
31, 2mp3an3 1337 . 2  |-  ( ( A  e.  V  /\  A  e.  V )  ->  A  ~~  A )
43anidms 397 1  |-  ( A  e.  V  ->  A  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   class class class wbr 4029    _I cid 4319    |` cres 4661   -1-1-onto->wf1o 5253    ~~ cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-en 6795
This theorem is referenced by:  enref  6819  eqeng  6820  domrefg  6821  mapdom1g  6903  fidifsnen  6926  nnfi  6928  onenon  7244  oncardval  7246  cardonle  7247  dju1en  7273  xpdjuen  7278  iseqf1olemqf1o  10577  hashun  10876  lgseisenlem2  15187
  Copyright terms: Public domain W3C validator