ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrefg Unicode version

Theorem enrefg 6854
Description: Equinumerosity is reflexive. Theorem 1 of [Suppes] p. 92. (Contributed by NM, 18-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
enrefg  |-  ( A  e.  V  ->  A  ~~  A )

Proof of Theorem enrefg
StepHypRef Expression
1 f1oi 5559 . . 3  |-  (  _I  |`  A ) : A -1-1-onto-> A
2 f1oen2g 6845 . . 3  |-  ( ( A  e.  V  /\  A  e.  V  /\  (  _I  |`  A ) : A -1-1-onto-> A )  ->  A  ~~  A )
31, 2mp3an3 1338 . 2  |-  ( ( A  e.  V  /\  A  e.  V )  ->  A  ~~  A )
43anidms 397 1  |-  ( A  e.  V  ->  A  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   class class class wbr 4043    _I cid 4334    |` cres 4676   -1-1-onto->wf1o 5269    ~~ cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-en 6827
This theorem is referenced by:  enref  6855  eqeng  6856  domrefg  6857  mapdom1g  6943  fidifsnen  6966  nnfi  6968  onenon  7290  oncardval  7292  cardonle  7293  dju1en  7324  xpdjuen  7329  iseqf1olemqf1o  10649  hashun  10948  lgseisenlem2  15490
  Copyright terms: Public domain W3C validator