ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domentr Unicode version

Theorem domentr 6883
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
domentr  |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A  ~<_  C )

Proof of Theorem domentr
StepHypRef Expression
1 endom 6854 . 2  |-  ( B 
~~  C  ->  B  ~<_  C )
2 domtr 6877 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan2 286 1  |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   class class class wbr 4044    ~~ cen 6825    ~<_ cdom 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-f1o 5278  df-en 6828  df-dom 6829
This theorem is referenced by:  xpdom1g  6928  domen2  6940  phplem4dom  6959  phpm  6962  fisbth  6980  infnfi  6992  fientri3  7012  exmidfodomrlemr  7310  exmidfodomrlemrALT  7311  hashennnuni  10924  xpct  12767  pwf1oexmid  15936  sbthom  15965
  Copyright terms: Public domain W3C validator