ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domentr Unicode version

Theorem domentr 6906
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
domentr  |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A  ~<_  C )

Proof of Theorem domentr
StepHypRef Expression
1 endom 6877 . 2  |-  ( B 
~~  C  ->  B  ~<_  C )
2 domtr 6900 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan2 286 1  |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   class class class wbr 4059    ~~ cen 6848    ~<_ cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-f1o 5297  df-en 6851  df-dom 6852
This theorem is referenced by:  xpdom1g  6953  domen2  6965  phplem4dom  6984  phpm  6988  fisbth  7006  infnfi  7018  fientri3  7038  exmidfodomrlemr  7341  exmidfodomrlemrALT  7342  hashennnuni  10961  xpct  12882  umgrislfupgrenlem  15836  lfgrnloopen  15839  pwf1oexmid  16138  sbthom  16167
  Copyright terms: Public domain W3C validator