ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domentr Unicode version

Theorem domentr 6781
Description: Transitivity of dominance and equinumerosity. (Contributed by NM, 7-Jun-1998.)
Assertion
Ref Expression
domentr  |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A  ~<_  C )

Proof of Theorem domentr
StepHypRef Expression
1 endom 6753 . 2  |-  ( B 
~~  C  ->  B  ~<_  C )
2 domtr 6775 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  C )  ->  A  ~<_  C )
31, 2sylan2 286 1  |-  ( ( A  ~<_  B  /\  B  ~~  C )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   class class class wbr 3998    ~~ cen 6728    ~<_ cdom 6729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-f1o 5215  df-en 6731  df-dom 6732
This theorem is referenced by:  xpdom1g  6823  domen2  6833  phplem4dom  6852  phpm  6855  fisbth  6873  infnfi  6885  fientri3  6904  exmidfodomrlemr  7191  exmidfodomrlemrALT  7192  hashennnuni  10727  xpct  12364  pwf1oexmid  14309  sbthom  14335
  Copyright terms: Public domain W3C validator