ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo Unicode version

Theorem resqrexlemlo 10625
Description: Lemma for resqrex 10638. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemlo  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemlo
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5714 . . . . . 6  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
21oveq2d 5722 . . . . 5  |-  ( w  =  1  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ 1 ) ) )
3 fveq2 5353 . . . . 5  |-  ( w  =  1  ->  ( F `  w )  =  ( F ` 
1 ) )
42, 3breq12d 3888 . . . 4  |-  ( w  =  1  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ 1 ) )  < 
( F `  1
) ) )
54imbi2d 229 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( F `
 1 ) ) ) )
6 oveq2 5714 . . . . . 6  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
76oveq2d 5722 . . . . 5  |-  ( w  =  k  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ k
) ) )
8 fveq2 5353 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
97, 8breq12d 3888 . . . 4  |-  ( w  =  k  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ k ) )  < 
( F `  k
) ) )
109imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ k ) )  <  ( F `
 k ) ) ) )
11 oveq2 5714 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1211oveq2d 5722 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ (
k  +  1 ) ) ) )
13 fveq2 5353 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1412, 13breq12d 3888 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ ( k  +  1 ) ) )  < 
( F `  (
k  +  1 ) ) ) )
1514imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ ( k  +  1 ) ) )  <  ( F `
 ( k  +  1 ) ) ) ) )
16 oveq2 5714 . . . . . 6  |-  ( w  =  N  ->  (
2 ^ w )  =  ( 2 ^ N ) )
1716oveq2d 5722 . . . . 5  |-  ( w  =  N  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ N
) ) )
18 fveq2 5353 . . . . 5  |-  ( w  =  N  ->  ( F `  w )  =  ( F `  N ) )
1917, 18breq12d 3888 . . . 4  |-  ( w  =  N  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) ) )
2019imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( F `
 N ) ) ) )
21 2cnd 8651 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
2221exp1d 10260 . . . . . . 7  |-  ( ph  ->  ( 2 ^ 1 )  =  2 )
23 2rp 9296 . . . . . . 7  |-  2  e.  RR+
2422, 23syl6eqel 2190 . . . . . 6  |-  ( ph  ->  ( 2 ^ 1 )  e.  RR+ )
2524rprecred 9342 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  e.  RR )
26 1red 7653 . . . . 5  |-  ( ph  ->  1  e.  RR )
27 resqrexlemex.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
2826, 27readdcld 7667 . . . . 5  |-  ( ph  ->  ( 1  +  A
)  e.  RR )
2922oveq2d 5722 . . . . . 6  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  =  ( 1  /  2 ) )
30 halflt1 8789 . . . . . 6  |-  ( 1  /  2 )  <  1
3129, 30syl6eqbr 3912 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  1 )
32 resqrexlemex.agt0 . . . . . 6  |-  ( ph  ->  0  <_  A )
3326, 27addge01d 8161 . . . . . 6  |-  ( ph  ->  ( 0  <_  A  <->  1  <_  ( 1  +  A ) ) )
3432, 33mpbid 146 . . . . 5  |-  ( ph  ->  1  <_  ( 1  +  A ) )
3525, 26, 28, 31, 34ltletrd 8052 . . . 4  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( 1  +  A ) )
36 resqrexlemex.seq . . . . 5  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
3736, 27, 32resqrexlemf1 10620 . . . 4  |-  ( ph  ->  ( F `  1
)  =  ( 1  +  A ) )
3835, 37breqtrrd 3901 . . 3  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( F `
 1 ) )
3923a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2  e.  RR+ )
40 nnz 8925 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
4140ad2antlr 476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
k  e.  ZZ )
4239, 41rpexpcld 10289 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
)  e.  RR+ )
4342rpcnd 9332 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
)  e.  CC )
44 2cnd 8651 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2  e.  CC )
4542rpap0d 9336 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
) #  0 )
4639rpap0d 9336 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2 #  0 )
4743, 44, 45, 46recdivap2d 8429 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  =  ( 1  /  ( ( 2 ^ k )  x.  2 ) ) )
48 nnnn0 8836 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
4948ad2antlr 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
k  e.  NN0 )
5044, 49expp1d 10266 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ (
k  +  1 ) )  =  ( ( 2 ^ k )  x.  2 ) )
5150oveq2d 5722 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ ( k  +  1 ) ) )  =  ( 1  /  ( ( 2 ^ k )  x.  2 ) ) )
5247, 51eqtr4d 2135 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  =  ( 1  /  ( 2 ^ ( k  +  1 ) ) ) )
5342rprecred 9342 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  e.  RR )
5436, 27, 32resqrexlemf 10619 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> RR+ )
5554ffvelrnda 5487 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR+ )
5655rpred 9330 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
5756adantr 272 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  k
)  e.  RR )
5827adantr 272 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
5958, 55rerpdivcld 9362 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  /  ( F `  k ) )  e.  RR )
6059adantr 272 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( A  /  ( F `  k )
)  e.  RR )
6157, 60readdcld 7667 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( F `  k )  +  ( A  /  ( F `
 k ) ) )  e.  RR )
62 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  <  ( F `
 k ) )
6332adantr 272 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_  A )
6458, 55, 63divge0d 9371 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( A  /  ( F `  k )
) )
6556, 59addge01d 8161 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0  <_  ( A  / 
( F `  k
) )  <->  ( F `  k )  <_  (
( F `  k
)  +  ( A  /  ( F `  k ) ) ) ) )
6664, 65mpbid 146 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  <_ 
( ( F `  k )  +  ( A  /  ( F `
 k ) ) ) )
6766adantr 272 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  k
)  <_  ( ( F `  k )  +  ( A  / 
( F `  k
) ) ) )
6853, 57, 61, 62, 67ltletrd 8052 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  <  ( ( F `  k )  +  ( A  / 
( F `  k
) ) ) )
6953, 61, 39, 68ltdiv1dd 9388 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  <  ( (
( F `  k
)  +  ( A  /  ( F `  k ) ) )  /  2 ) )
7036, 27, 32resqrexlemfp1 10621 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  =  ( ( ( F `
 k )  +  ( A  /  ( F `  k )
) )  /  2
) )
7170adantr 272 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  (
k  +  1 ) )  =  ( ( ( F `  k
)  +  ( A  /  ( F `  k ) ) )  /  2 ) )
7269, 71breqtrrd 3901 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  <  ( F `  ( k  +  1 ) ) )
7352, 72eqbrtrrd 3897 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ ( k  +  1 ) ) )  <  ( F `
 ( k  +  1 ) ) )
7473ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( 2 ^ k ) )  <  ( F `  k )  ->  (
1  /  ( 2 ^ ( k  +  1 ) ) )  <  ( F `  ( k  +  1 ) ) ) )
7574expcom 115 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( ( 1  /  ( 2 ^ k ) )  < 
( F `  k
)  ->  ( 1  /  ( 2 ^ ( k  +  1 ) ) )  < 
( F `  (
k  +  1 ) ) ) ) )
7675a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  ( 1  /  ( 2 ^ k ) )  < 
( F `  k
) )  ->  ( ph  ->  ( 1  / 
( 2 ^ (
k  +  1 ) ) )  <  ( F `  ( k  +  1 ) ) ) ) )
775, 10, 15, 20, 38, 76nnind 8594 . 2  |-  ( N  e.  NN  ->  ( ph  ->  ( 1  / 
( 2 ^ N
) )  <  ( F `  N )
) )
7877impcom 124 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   {csn 3474   class class class wbr 3875    X. cxp 4475   ` cfv 5059  (class class class)co 5706    e. cmpo 5708   RRcr 7499   0cc0 7500   1c1 7501    + caddc 7503    x. cmul 7505    < clt 7672    <_ cle 7673    / cdiv 8293   NNcn 8578   2c2 8629   NN0cn0 8829   ZZcz 8906   RR+crp 9291    seqcseq 10059   ^cexp 10133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134
This theorem is referenced by:  resqrexlemnm  10630
  Copyright terms: Public domain W3C validator