| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemlo | Unicode version | ||
| Description: Lemma for resqrex 11191. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| Ref | Expression |
|---|---|
| resqrexlemlo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5930 |
. . . . . 6
| |
| 2 | 1 | oveq2d 5938 |
. . . . 5
|
| 3 | fveq2 5558 |
. . . . 5
| |
| 4 | 2, 3 | breq12d 4046 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | oveq2 5930 |
. . . . . 6
| |
| 7 | 6 | oveq2d 5938 |
. . . . 5
|
| 8 | fveq2 5558 |
. . . . 5
| |
| 9 | 7, 8 | breq12d 4046 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | oveq2 5930 |
. . . . . 6
| |
| 12 | 11 | oveq2d 5938 |
. . . . 5
|
| 13 | fveq2 5558 |
. . . . 5
| |
| 14 | 12, 13 | breq12d 4046 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | oveq2 5930 |
. . . . . 6
| |
| 17 | 16 | oveq2d 5938 |
. . . . 5
|
| 18 | fveq2 5558 |
. . . . 5
| |
| 19 | 17, 18 | breq12d 4046 |
. . . 4
|
| 20 | 19 | imbi2d 230 |
. . 3
|
| 21 | 2cnd 9063 |
. . . . . . . 8
| |
| 22 | 21 | exp1d 10760 |
. . . . . . 7
|
| 23 | 2rp 9733 |
. . . . . . 7
| |
| 24 | 22, 23 | eqeltrdi 2287 |
. . . . . 6
|
| 25 | 24 | rprecred 9783 |
. . . . 5
|
| 26 | 1red 8041 |
. . . . 5
| |
| 27 | resqrexlemex.a |
. . . . . 6
| |
| 28 | 26, 27 | readdcld 8056 |
. . . . 5
|
| 29 | 22 | oveq2d 5938 |
. . . . . 6
|
| 30 | halflt1 9208 |
. . . . . 6
| |
| 31 | 29, 30 | eqbrtrdi 4072 |
. . . . 5
|
| 32 | resqrexlemex.agt0 |
. . . . . 6
| |
| 33 | 26, 27 | addge01d 8560 |
. . . . . 6
|
| 34 | 32, 33 | mpbid 147 |
. . . . 5
|
| 35 | 25, 26, 28, 31, 34 | ltletrd 8450 |
. . . 4
|
| 36 | resqrexlemex.seq |
. . . . 5
| |
| 37 | 36, 27, 32 | resqrexlemf1 11173 |
. . . 4
|
| 38 | 35, 37 | breqtrrd 4061 |
. . 3
|
| 39 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 40 | nnz 9345 |
. . . . . . . . . . . 12
| |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 42 | 39, 41 | rpexpcld 10789 |
. . . . . . . . . 10
|
| 43 | 42 | rpcnd 9773 |
. . . . . . . . 9
|
| 44 | 2cnd 9063 |
. . . . . . . . 9
| |
| 45 | 42 | rpap0d 9777 |
. . . . . . . . 9
|
| 46 | 39 | rpap0d 9777 |
. . . . . . . . 9
|
| 47 | 43, 44, 45, 46 | recdivap2d 8835 |
. . . . . . . 8
|
| 48 | nnnn0 9256 |
. . . . . . . . . . 11
| |
| 49 | 48 | ad2antlr 489 |
. . . . . . . . . 10
|
| 50 | 44, 49 | expp1d 10766 |
. . . . . . . . 9
|
| 51 | 50 | oveq2d 5938 |
. . . . . . . 8
|
| 52 | 47, 51 | eqtr4d 2232 |
. . . . . . 7
|
| 53 | 42 | rprecred 9783 |
. . . . . . . . 9
|
| 54 | 36, 27, 32 | resqrexlemf 11172 |
. . . . . . . . . . . . 13
|
| 55 | 54 | ffvelcdmda 5697 |
. . . . . . . . . . . 12
|
| 56 | 55 | rpred 9771 |
. . . . . . . . . . 11
|
| 57 | 56 | adantr 276 |
. . . . . . . . . 10
|
| 58 | 27 | adantr 276 |
. . . . . . . . . . . 12
|
| 59 | 58, 55 | rerpdivcld 9803 |
. . . . . . . . . . 11
|
| 60 | 59 | adantr 276 |
. . . . . . . . . 10
|
| 61 | 57, 60 | readdcld 8056 |
. . . . . . . . 9
|
| 62 | simpr 110 |
. . . . . . . . . 10
| |
| 63 | 32 | adantr 276 |
. . . . . . . . . . . . 13
|
| 64 | 58, 55, 63 | divge0d 9812 |
. . . . . . . . . . . 12
|
| 65 | 56, 59 | addge01d 8560 |
. . . . . . . . . . . 12
|
| 66 | 64, 65 | mpbid 147 |
. . . . . . . . . . 11
|
| 67 | 66 | adantr 276 |
. . . . . . . . . 10
|
| 68 | 53, 57, 61, 62, 67 | ltletrd 8450 |
. . . . . . . . 9
|
| 69 | 53, 61, 39, 68 | ltdiv1dd 9829 |
. . . . . . . 8
|
| 70 | 36, 27, 32 | resqrexlemfp1 11174 |
. . . . . . . . 9
|
| 71 | 70 | adantr 276 |
. . . . . . . 8
|
| 72 | 69, 71 | breqtrrd 4061 |
. . . . . . 7
|
| 73 | 52, 72 | eqbrtrrd 4057 |
. . . . . 6
|
| 74 | 73 | ex 115 |
. . . . 5
|
| 75 | 74 | expcom 116 |
. . . 4
|
| 76 | 75 | a2d 26 |
. . 3
|
| 77 | 5, 10, 15, 20, 38, 76 | nnind 9006 |
. 2
|
| 78 | 77 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 |
| This theorem is referenced by: resqrexlemnm 11183 |
| Copyright terms: Public domain | W3C validator |