ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo Unicode version

Theorem resqrexlemlo 10977
Description: Lemma for resqrex 10990. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemlo  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemlo
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . . 6  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
21oveq2d 5869 . . . . 5  |-  ( w  =  1  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ 1 ) ) )
3 fveq2 5496 . . . . 5  |-  ( w  =  1  ->  ( F `  w )  =  ( F ` 
1 ) )
42, 3breq12d 4002 . . . 4  |-  ( w  =  1  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ 1 ) )  < 
( F `  1
) ) )
54imbi2d 229 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( F `
 1 ) ) ) )
6 oveq2 5861 . . . . . 6  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
76oveq2d 5869 . . . . 5  |-  ( w  =  k  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ k
) ) )
8 fveq2 5496 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
97, 8breq12d 4002 . . . 4  |-  ( w  =  k  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ k ) )  < 
( F `  k
) ) )
109imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ k ) )  <  ( F `
 k ) ) ) )
11 oveq2 5861 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1211oveq2d 5869 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ (
k  +  1 ) ) ) )
13 fveq2 5496 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1412, 13breq12d 4002 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ ( k  +  1 ) ) )  < 
( F `  (
k  +  1 ) ) ) )
1514imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ ( k  +  1 ) ) )  <  ( F `
 ( k  +  1 ) ) ) ) )
16 oveq2 5861 . . . . . 6  |-  ( w  =  N  ->  (
2 ^ w )  =  ( 2 ^ N ) )
1716oveq2d 5869 . . . . 5  |-  ( w  =  N  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ N
) ) )
18 fveq2 5496 . . . . 5  |-  ( w  =  N  ->  ( F `  w )  =  ( F `  N ) )
1917, 18breq12d 4002 . . . 4  |-  ( w  =  N  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) ) )
2019imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( F `
 N ) ) ) )
21 2cnd 8951 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
2221exp1d 10604 . . . . . . 7  |-  ( ph  ->  ( 2 ^ 1 )  =  2 )
23 2rp 9615 . . . . . . 7  |-  2  e.  RR+
2422, 23eqeltrdi 2261 . . . . . 6  |-  ( ph  ->  ( 2 ^ 1 )  e.  RR+ )
2524rprecred 9665 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  e.  RR )
26 1red 7935 . . . . 5  |-  ( ph  ->  1  e.  RR )
27 resqrexlemex.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
2826, 27readdcld 7949 . . . . 5  |-  ( ph  ->  ( 1  +  A
)  e.  RR )
2922oveq2d 5869 . . . . . 6  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  =  ( 1  /  2 ) )
30 halflt1 9095 . . . . . 6  |-  ( 1  /  2 )  <  1
3129, 30eqbrtrdi 4028 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  1 )
32 resqrexlemex.agt0 . . . . . 6  |-  ( ph  ->  0  <_  A )
3326, 27addge01d 8452 . . . . . 6  |-  ( ph  ->  ( 0  <_  A  <->  1  <_  ( 1  +  A ) ) )
3432, 33mpbid 146 . . . . 5  |-  ( ph  ->  1  <_  ( 1  +  A ) )
3525, 26, 28, 31, 34ltletrd 8342 . . . 4  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( 1  +  A ) )
36 resqrexlemex.seq . . . . 5  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
3736, 27, 32resqrexlemf1 10972 . . . 4  |-  ( ph  ->  ( F `  1
)  =  ( 1  +  A ) )
3835, 37breqtrrd 4017 . . 3  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( F `
 1 ) )
3923a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2  e.  RR+ )
40 nnz 9231 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
4140ad2antlr 486 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
k  e.  ZZ )
4239, 41rpexpcld 10633 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
)  e.  RR+ )
4342rpcnd 9655 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
)  e.  CC )
44 2cnd 8951 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2  e.  CC )
4542rpap0d 9659 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
) #  0 )
4639rpap0d 9659 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2 #  0 )
4743, 44, 45, 46recdivap2d 8725 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  =  ( 1  /  ( ( 2 ^ k )  x.  2 ) ) )
48 nnnn0 9142 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
4948ad2antlr 486 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
k  e.  NN0 )
5044, 49expp1d 10610 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ (
k  +  1 ) )  =  ( ( 2 ^ k )  x.  2 ) )
5150oveq2d 5869 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ ( k  +  1 ) ) )  =  ( 1  /  ( ( 2 ^ k )  x.  2 ) ) )
5247, 51eqtr4d 2206 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  =  ( 1  /  ( 2 ^ ( k  +  1 ) ) ) )
5342rprecred 9665 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  e.  RR )
5436, 27, 32resqrexlemf 10971 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> RR+ )
5554ffvelrnda 5631 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR+ )
5655rpred 9653 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
5756adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  k
)  e.  RR )
5827adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
5958, 55rerpdivcld 9685 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  /  ( F `  k ) )  e.  RR )
6059adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( A  /  ( F `  k )
)  e.  RR )
6157, 60readdcld 7949 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( F `  k )  +  ( A  /  ( F `
 k ) ) )  e.  RR )
62 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  <  ( F `
 k ) )
6332adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_  A )
6458, 55, 63divge0d 9694 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( A  /  ( F `  k )
) )
6556, 59addge01d 8452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0  <_  ( A  / 
( F `  k
) )  <->  ( F `  k )  <_  (
( F `  k
)  +  ( A  /  ( F `  k ) ) ) ) )
6664, 65mpbid 146 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  <_ 
( ( F `  k )  +  ( A  /  ( F `
 k ) ) ) )
6766adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  k
)  <_  ( ( F `  k )  +  ( A  / 
( F `  k
) ) ) )
6853, 57, 61, 62, 67ltletrd 8342 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  <  ( ( F `  k )  +  ( A  / 
( F `  k
) ) ) )
6953, 61, 39, 68ltdiv1dd 9711 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  <  ( (
( F `  k
)  +  ( A  /  ( F `  k ) ) )  /  2 ) )
7036, 27, 32resqrexlemfp1 10973 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  =  ( ( ( F `
 k )  +  ( A  /  ( F `  k )
) )  /  2
) )
7170adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  (
k  +  1 ) )  =  ( ( ( F `  k
)  +  ( A  /  ( F `  k ) ) )  /  2 ) )
7269, 71breqtrrd 4017 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  <  ( F `  ( k  +  1 ) ) )
7352, 72eqbrtrrd 4013 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ ( k  +  1 ) ) )  <  ( F `
 ( k  +  1 ) ) )
7473ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( 2 ^ k ) )  <  ( F `  k )  ->  (
1  /  ( 2 ^ ( k  +  1 ) ) )  <  ( F `  ( k  +  1 ) ) ) )
7574expcom 115 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( ( 1  /  ( 2 ^ k ) )  < 
( F `  k
)  ->  ( 1  /  ( 2 ^ ( k  +  1 ) ) )  < 
( F `  (
k  +  1 ) ) ) ) )
7675a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  ( 1  /  ( 2 ^ k ) )  < 
( F `  k
) )  ->  ( ph  ->  ( 1  / 
( 2 ^ (
k  +  1 ) ) )  <  ( F `  ( k  +  1 ) ) ) ) )
775, 10, 15, 20, 38, 76nnind 8894 . 2  |-  ( N  e.  NN  ->  ( ph  ->  ( 1  / 
( 2 ^ N
) )  <  ( F `  N )
) )
7877impcom 124 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {csn 3583   class class class wbr 3989    X. cxp 4609   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   RR+crp 9610    seqcseq 10401   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemnm  10982
  Copyright terms: Public domain W3C validator