ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemlo Unicode version

Theorem resqrexlemlo 10816
Description: Lemma for resqrex 10829. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
Assertion
Ref Expression
resqrexlemlo  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    N( y, z)

Proof of Theorem resqrexlemlo
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5789 . . . . . 6  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
21oveq2d 5797 . . . . 5  |-  ( w  =  1  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ 1 ) ) )
3 fveq2 5428 . . . . 5  |-  ( w  =  1  ->  ( F `  w )  =  ( F ` 
1 ) )
42, 3breq12d 3949 . . . 4  |-  ( w  =  1  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ 1 ) )  < 
( F `  1
) ) )
54imbi2d 229 . . 3  |-  ( w  =  1  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( F `
 1 ) ) ) )
6 oveq2 5789 . . . . . 6  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
76oveq2d 5797 . . . . 5  |-  ( w  =  k  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ k
) ) )
8 fveq2 5428 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
97, 8breq12d 3949 . . . 4  |-  ( w  =  k  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ k ) )  < 
( F `  k
) ) )
109imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ k ) )  <  ( F `
 k ) ) ) )
11 oveq2 5789 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1211oveq2d 5797 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ (
k  +  1 ) ) ) )
13 fveq2 5428 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1412, 13breq12d 3949 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ ( k  +  1 ) ) )  < 
( F `  (
k  +  1 ) ) ) )
1514imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ ( k  +  1 ) ) )  <  ( F `
 ( k  +  1 ) ) ) ) )
16 oveq2 5789 . . . . . 6  |-  ( w  =  N  ->  (
2 ^ w )  =  ( 2 ^ N ) )
1716oveq2d 5797 . . . . 5  |-  ( w  =  N  ->  (
1  /  ( 2 ^ w ) )  =  ( 1  / 
( 2 ^ N
) ) )
18 fveq2 5428 . . . . 5  |-  ( w  =  N  ->  ( F `  w )  =  ( F `  N ) )
1917, 18breq12d 3949 . . . 4  |-  ( w  =  N  ->  (
( 1  /  (
2 ^ w ) )  <  ( F `
 w )  <->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) ) )
2019imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( 1  /  ( 2 ^ w ) )  < 
( F `  w
) )  <->  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( F `
 N ) ) ) )
21 2cnd 8816 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
2221exp1d 10449 . . . . . . 7  |-  ( ph  ->  ( 2 ^ 1 )  =  2 )
23 2rp 9474 . . . . . . 7  |-  2  e.  RR+
2422, 23eqeltrdi 2231 . . . . . 6  |-  ( ph  ->  ( 2 ^ 1 )  e.  RR+ )
2524rprecred 9524 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  e.  RR )
26 1red 7804 . . . . 5  |-  ( ph  ->  1  e.  RR )
27 resqrexlemex.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
2826, 27readdcld 7818 . . . . 5  |-  ( ph  ->  ( 1  +  A
)  e.  RR )
2922oveq2d 5797 . . . . . 6  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  =  ( 1  /  2 ) )
30 halflt1 8960 . . . . . 6  |-  ( 1  /  2 )  <  1
3129, 30eqbrtrdi 3974 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  1 )
32 resqrexlemex.agt0 . . . . . 6  |-  ( ph  ->  0  <_  A )
3326, 27addge01d 8318 . . . . . 6  |-  ( ph  ->  ( 0  <_  A  <->  1  <_  ( 1  +  A ) ) )
3432, 33mpbid 146 . . . . 5  |-  ( ph  ->  1  <_  ( 1  +  A ) )
3525, 26, 28, 31, 34ltletrd 8208 . . . 4  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( 1  +  A ) )
36 resqrexlemex.seq . . . . 5  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
3736, 27, 32resqrexlemf1 10811 . . . 4  |-  ( ph  ->  ( F `  1
)  =  ( 1  +  A ) )
3835, 37breqtrrd 3963 . . 3  |-  ( ph  ->  ( 1  /  (
2 ^ 1 ) )  <  ( F `
 1 ) )
3923a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2  e.  RR+ )
40 nnz 9096 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  ZZ )
4140ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
k  e.  ZZ )
4239, 41rpexpcld 10478 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
)  e.  RR+ )
4342rpcnd 9514 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
)  e.  CC )
44 2cnd 8816 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2  e.  CC )
4542rpap0d 9518 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ k
) #  0 )
4639rpap0d 9518 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
2 #  0 )
4743, 44, 45, 46recdivap2d 8591 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  =  ( 1  /  ( ( 2 ^ k )  x.  2 ) ) )
48 nnnn0 9007 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
4948ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
k  e.  NN0 )
5044, 49expp1d 10455 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 2 ^ (
k  +  1 ) )  =  ( ( 2 ^ k )  x.  2 ) )
5150oveq2d 5797 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ ( k  +  1 ) ) )  =  ( 1  /  ( ( 2 ^ k )  x.  2 ) ) )
5247, 51eqtr4d 2176 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  =  ( 1  /  ( 2 ^ ( k  +  1 ) ) ) )
5342rprecred 9524 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  e.  RR )
5436, 27, 32resqrexlemf 10810 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> RR+ )
5554ffvelrnda 5562 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR+ )
5655rpred 9512 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
5756adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  k
)  e.  RR )
5827adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
5958, 55rerpdivcld 9544 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( A  /  ( F `  k ) )  e.  RR )
6059adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( A  /  ( F `  k )
)  e.  RR )
6157, 60readdcld 7818 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( F `  k )  +  ( A  /  ( F `
 k ) ) )  e.  RR )
62 simpr 109 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  <  ( F `
 k ) )
6332adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_  A )
6458, 55, 63divge0d 9553 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( A  /  ( F `  k )
) )
6556, 59addge01d 8318 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN )  ->  ( 0  <_  ( A  / 
( F `  k
) )  <->  ( F `  k )  <_  (
( F `  k
)  +  ( A  /  ( F `  k ) ) ) ) )
6664, 65mpbid 146 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  <_ 
( ( F `  k )  +  ( A  /  ( F `
 k ) ) ) )
6766adantr 274 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  k
)  <_  ( ( F `  k )  +  ( A  / 
( F `  k
) ) ) )
6853, 57, 61, 62, 67ltletrd 8208 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ k ) )  <  ( ( F `  k )  +  ( A  / 
( F `  k
) ) ) )
6953, 61, 39, 68ltdiv1dd 9570 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  <  ( (
( F `  k
)  +  ( A  /  ( F `  k ) ) )  /  2 ) )
7036, 27, 32resqrexlemfp1 10812 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  =  ( ( ( F `
 k )  +  ( A  /  ( F `  k )
) )  /  2
) )
7170adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( F `  (
k  +  1 ) )  =  ( ( ( F `  k
)  +  ( A  /  ( F `  k ) ) )  /  2 ) )
7269, 71breqtrrd 3963 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( ( 1  / 
( 2 ^ k
) )  /  2
)  <  ( F `  ( k  +  1 ) ) )
7352, 72eqbrtrrd 3959 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
1  /  ( 2 ^ k ) )  <  ( F `  k ) )  -> 
( 1  /  (
2 ^ ( k  +  1 ) ) )  <  ( F `
 ( k  +  1 ) ) )
7473ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( 2 ^ k ) )  <  ( F `  k )  ->  (
1  /  ( 2 ^ ( k  +  1 ) ) )  <  ( F `  ( k  +  1 ) ) ) )
7574expcom 115 . . . 4  |-  ( k  e.  NN  ->  ( ph  ->  ( ( 1  /  ( 2 ^ k ) )  < 
( F `  k
)  ->  ( 1  /  ( 2 ^ ( k  +  1 ) ) )  < 
( F `  (
k  +  1 ) ) ) ) )
7675a2d 26 . . 3  |-  ( k  e.  NN  ->  (
( ph  ->  ( 1  /  ( 2 ^ k ) )  < 
( F `  k
) )  ->  ( ph  ->  ( 1  / 
( 2 ^ (
k  +  1 ) ) )  <  ( F `  ( k  +  1 ) ) ) ) )
775, 10, 15, 20, 38, 76nnind 8759 . 2  |-  ( N  e.  NN  ->  ( ph  ->  ( 1  / 
( 2 ^ N
) )  <  ( F `  N )
) )
7877impcom 124 1  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   {csn 3531   class class class wbr 3936    X. cxp 4544   ` cfv 5130  (class class class)co 5781    e. cmpo 5783   RRcr 7642   0cc0 7643   1c1 7644    + caddc 7646    x. cmul 7648    < clt 7823    <_ cle 7824    / cdiv 8455   NNcn 8743   2c2 8794   NN0cn0 9000   ZZcz 9077   RR+crp 9469    seqcseq 10248   ^cexp 10322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-seqfrec 10249  df-exp 10323
This theorem is referenced by:  resqrexlemnm  10821
  Copyright terms: Public domain W3C validator