| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemlo | Unicode version | ||
| Description: Lemma for resqrex 11452. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| Ref | Expression |
|---|---|
| resqrexlemlo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . . . 6
| |
| 2 | 1 | oveq2d 5983 |
. . . . 5
|
| 3 | fveq2 5599 |
. . . . 5
| |
| 4 | 2, 3 | breq12d 4072 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | oveq2 5975 |
. . . . . 6
| |
| 7 | 6 | oveq2d 5983 |
. . . . 5
|
| 8 | fveq2 5599 |
. . . . 5
| |
| 9 | 7, 8 | breq12d 4072 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | oveq2 5975 |
. . . . . 6
| |
| 12 | 11 | oveq2d 5983 |
. . . . 5
|
| 13 | fveq2 5599 |
. . . . 5
| |
| 14 | 12, 13 | breq12d 4072 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | oveq2 5975 |
. . . . . 6
| |
| 17 | 16 | oveq2d 5983 |
. . . . 5
|
| 18 | fveq2 5599 |
. . . . 5
| |
| 19 | 17, 18 | breq12d 4072 |
. . . 4
|
| 20 | 19 | imbi2d 230 |
. . 3
|
| 21 | 2cnd 9144 |
. . . . . . . 8
| |
| 22 | 21 | exp1d 10850 |
. . . . . . 7
|
| 23 | 2rp 9815 |
. . . . . . 7
| |
| 24 | 22, 23 | eqeltrdi 2298 |
. . . . . 6
|
| 25 | 24 | rprecred 9865 |
. . . . 5
|
| 26 | 1red 8122 |
. . . . 5
| |
| 27 | resqrexlemex.a |
. . . . . 6
| |
| 28 | 26, 27 | readdcld 8137 |
. . . . 5
|
| 29 | 22 | oveq2d 5983 |
. . . . . 6
|
| 30 | halflt1 9289 |
. . . . . 6
| |
| 31 | 29, 30 | eqbrtrdi 4098 |
. . . . 5
|
| 32 | resqrexlemex.agt0 |
. . . . . 6
| |
| 33 | 26, 27 | addge01d 8641 |
. . . . . 6
|
| 34 | 32, 33 | mpbid 147 |
. . . . 5
|
| 35 | 25, 26, 28, 31, 34 | ltletrd 8531 |
. . . 4
|
| 36 | resqrexlemex.seq |
. . . . 5
| |
| 37 | 36, 27, 32 | resqrexlemf1 11434 |
. . . 4
|
| 38 | 35, 37 | breqtrrd 4087 |
. . 3
|
| 39 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 40 | nnz 9426 |
. . . . . . . . . . . 12
| |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 42 | 39, 41 | rpexpcld 10879 |
. . . . . . . . . 10
|
| 43 | 42 | rpcnd 9855 |
. . . . . . . . 9
|
| 44 | 2cnd 9144 |
. . . . . . . . 9
| |
| 45 | 42 | rpap0d 9859 |
. . . . . . . . 9
|
| 46 | 39 | rpap0d 9859 |
. . . . . . . . 9
|
| 47 | 43, 44, 45, 46 | recdivap2d 8916 |
. . . . . . . 8
|
| 48 | nnnn0 9337 |
. . . . . . . . . . 11
| |
| 49 | 48 | ad2antlr 489 |
. . . . . . . . . 10
|
| 50 | 44, 49 | expp1d 10856 |
. . . . . . . . 9
|
| 51 | 50 | oveq2d 5983 |
. . . . . . . 8
|
| 52 | 47, 51 | eqtr4d 2243 |
. . . . . . 7
|
| 53 | 42 | rprecred 9865 |
. . . . . . . . 9
|
| 54 | 36, 27, 32 | resqrexlemf 11433 |
. . . . . . . . . . . . 13
|
| 55 | 54 | ffvelcdmda 5738 |
. . . . . . . . . . . 12
|
| 56 | 55 | rpred 9853 |
. . . . . . . . . . 11
|
| 57 | 56 | adantr 276 |
. . . . . . . . . 10
|
| 58 | 27 | adantr 276 |
. . . . . . . . . . . 12
|
| 59 | 58, 55 | rerpdivcld 9885 |
. . . . . . . . . . 11
|
| 60 | 59 | adantr 276 |
. . . . . . . . . 10
|
| 61 | 57, 60 | readdcld 8137 |
. . . . . . . . 9
|
| 62 | simpr 110 |
. . . . . . . . . 10
| |
| 63 | 32 | adantr 276 |
. . . . . . . . . . . . 13
|
| 64 | 58, 55, 63 | divge0d 9894 |
. . . . . . . . . . . 12
|
| 65 | 56, 59 | addge01d 8641 |
. . . . . . . . . . . 12
|
| 66 | 64, 65 | mpbid 147 |
. . . . . . . . . . 11
|
| 67 | 66 | adantr 276 |
. . . . . . . . . 10
|
| 68 | 53, 57, 61, 62, 67 | ltletrd 8531 |
. . . . . . . . 9
|
| 69 | 53, 61, 39, 68 | ltdiv1dd 9911 |
. . . . . . . 8
|
| 70 | 36, 27, 32 | resqrexlemfp1 11435 |
. . . . . . . . 9
|
| 71 | 70 | adantr 276 |
. . . . . . . 8
|
| 72 | 69, 71 | breqtrrd 4087 |
. . . . . . 7
|
| 73 | 52, 72 | eqbrtrrd 4083 |
. . . . . 6
|
| 74 | 73 | ex 115 |
. . . . 5
|
| 75 | 74 | expcom 116 |
. . . 4
|
| 76 | 75 | a2d 26 |
. . 3
|
| 77 | 5, 10, 15, 20, 38, 76 | nnind 9087 |
. 2
|
| 78 | 77 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 |
| This theorem is referenced by: resqrexlemnm 11444 |
| Copyright terms: Public domain | W3C validator |