ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facwordi Unicode version

Theorem facwordi 10722
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )

Proof of Theorem facwordi
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4009 . . . . . 6  |-  ( j  =  0  ->  ( M  <_  j  <->  M  <_  0 ) )
21anbi2d 464 . . . . 5  |-  ( j  =  0  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  0 ) ) )
3 fveq2 5517 . . . . . 6  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
43breq2d 4017 . . . . 5  |-  ( j  =  0  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  0 )
) )
52, 4imbi12d 234 . . . 4  |-  ( j  =  0  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
0 )  ->  ( ! `  M )  <_  ( ! `  0
) ) ) )
6 breq2 4009 . . . . . 6  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
76anbi2d 464 . . . . 5  |-  ( j  =  k  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  k ) ) )
8 fveq2 5517 . . . . . 6  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98breq2d 4017 . . . . 5  |-  ( j  =  k  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  k )
) )
107, 9imbi12d 234 . . . 4  |-  ( j  =  k  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
k )  ->  ( ! `  M )  <_  ( ! `  k
) ) ) )
11 breq2 4009 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
1211anbi2d 464 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  ( k  +  1 ) ) ) )
13 fveq2 5517 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1413breq2d 4017 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
1512, 14imbi12d 234 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
16 breq2 4009 . . . . . 6  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
1716anbi2d 464 . . . . 5  |-  ( j  =  N  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  N ) ) )
18 fveq2 5517 . . . . . 6  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
1918breq2d 4017 . . . . 5  |-  ( j  =  N  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  N )
) )
2017, 19imbi12d 234 . . . 4  |-  ( j  =  N  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) ) ) )
21 nn0le0eq0 9206 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
2221biimpa 296 . . . . . 6  |-  ( ( M  e.  NN0  /\  M  <_  0 )  ->  M  =  0 )
2322fveq2d 5521 . . . . 5  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  =  ( ! `
 0 ) )
24 fac0 10710 . . . . . . 7  |-  ( ! `
 0 )  =  1
25 1re 7958 . . . . . . 7  |-  1  e.  RR
2624, 25eqeltri 2250 . . . . . 6  |-  ( ! `
 0 )  e.  RR
2726leidi 8444 . . . . 5  |-  ( ! `
 0 )  <_ 
( ! `  0
)
2823, 27eqbrtrdi 4044 . . . 4  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  <_  ( ! `  0 ) )
29 impexp 263 . . . . 5  |-  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  <->  ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k )
) ) )
30 simpl 109 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  ->  M  e.  NN0 )
3130nn0zd 9375 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  ->  M  e.  ZZ )
32 peano2nn0 9218 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3332adantl 277 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  NN0 )
3433nn0zd 9375 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  ZZ )
35 zleloe 9302 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( M  <_ 
( k  +  1 )  <->  ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
3631, 34, 35syl2anc 411 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  <-> 
( M  <  (
k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
37 nn0leltp1 9318 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  <->  M  <  ( k  +  1 ) ) )
38 faccl 10717 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3938nnred 8934 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  RR )
40 nn0re 9187 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  k  e.  RR )
41 peano2re 8095 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
4338nnnn0d 9231 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e. 
NN0 )
4443nn0ge0d 9234 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  0  <_ 
( ! `  k
) )
45 nn0p1nn 9217 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
4645nnge1d 8964 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  1  <_ 
( k  +  1 ) )
4739, 42, 44, 46lemulge11d 8896 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ( ! `  k )  x.  (
k  +  1 ) ) )
48 facp1 10712 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
4947, 48breqtrrd 4033 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ! `  (
k  +  1 ) ) )
5049adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  <_  ( ! `  ( k  +  1 ) ) )
51 faccl 10717 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
5251nnred 8934 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
5352adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
5439adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
5532faccld 10718 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
5655nnred 8934 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  RR )
5756adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  e.  RR )
58 letr 8042 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  k )  e.  RR  /\  ( ! `  ( k  +  1 ) )  e.  RR )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
5953, 54, 57, 58syl3anc 1238 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6050, 59mpan2d 428 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  M )  <_  ( ! `  k )  ->  ( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) )
6160imim2d 54 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
6261com23 78 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  ->  ( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
6337, 62sylbird 170 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
64 fveq2 5517 . . . . . . . . . . . . . . 15  |-  ( M  =  ( k  +  1 )  ->  ( ! `  M )  =  ( ! `  ( k  +  1 ) ) )
6552leidd 8473 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( ! `
 M )  <_ 
( ! `  M
) )
66 breq2 4009 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  (
( ! `  M
)  <_  ( ! `  M )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6765, 66syl5ibcom 155 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  ->  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6864, 67syl5 32 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6968adantr 276 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
7069a1dd 48 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7163, 70jaod 717 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) )
7236, 71sylbid 150 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7372ex 115 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( k  e.  NN0  ->  ( M  <_  ( k  +  1 )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7473com13 80 . . . . . . . 8  |-  ( M  <_  ( k  +  1 )  ->  (
k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7574com4l 84 . . . . . . 7  |-  ( k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) )  -> 
( M  <_  (
k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7675a2d 26 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( M  e. 
NN0  ->  ( M  <_ 
( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7776imp4a 349 . . . . 5  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7829, 77biimtrid 152 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ( M  e. 
NN0  /\  M  <_  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
795, 10, 15, 20, 28, 78nn0ind 9369 . . 3  |-  ( N  e.  NN0  ->  ( ( M  e.  NN0  /\  M  <_  N )  -> 
( ! `  M
)  <_  ( ! `  N ) ) )
80793impib 1201 . 2  |-  ( ( N  e.  NN0  /\  M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
81803com12 1207 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    <_ cle 7995   NN0cn0 9178   ZZcz 9255   !cfa 10707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-fac 10708
This theorem is referenced by:  facavg  10728
  Copyright terms: Public domain W3C validator