ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facwordi Unicode version

Theorem facwordi 10832
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )

Proof of Theorem facwordi
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4037 . . . . . 6  |-  ( j  =  0  ->  ( M  <_  j  <->  M  <_  0 ) )
21anbi2d 464 . . . . 5  |-  ( j  =  0  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  0 ) ) )
3 fveq2 5558 . . . . . 6  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
43breq2d 4045 . . . . 5  |-  ( j  =  0  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  0 )
) )
52, 4imbi12d 234 . . . 4  |-  ( j  =  0  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
0 )  ->  ( ! `  M )  <_  ( ! `  0
) ) ) )
6 breq2 4037 . . . . . 6  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
76anbi2d 464 . . . . 5  |-  ( j  =  k  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  k ) ) )
8 fveq2 5558 . . . . . 6  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
98breq2d 4045 . . . . 5  |-  ( j  =  k  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  k )
) )
107, 9imbi12d 234 . . . 4  |-  ( j  =  k  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
k )  ->  ( ! `  M )  <_  ( ! `  k
) ) ) )
11 breq2 4037 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
1211anbi2d 464 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  ( k  +  1 ) ) ) )
13 fveq2 5558 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
1413breq2d 4045 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
1512, 14imbi12d 234 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
16 breq2 4037 . . . . . 6  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
1716anbi2d 464 . . . . 5  |-  ( j  =  N  ->  (
( M  e.  NN0  /\  M  <_  j )  <->  ( M  e.  NN0  /\  M  <_  N ) ) )
18 fveq2 5558 . . . . . 6  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
1918breq2d 4045 . . . . 5  |-  ( j  =  N  ->  (
( ! `  M
)  <_  ( ! `  j )  <->  ( ! `  M )  <_  ( ! `  N )
) )
2017, 19imbi12d 234 . . . 4  |-  ( j  =  N  ->  (
( ( M  e. 
NN0  /\  M  <_  j )  ->  ( ! `  M )  <_  ( ! `  j )
)  <->  ( ( M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) ) ) )
21 nn0le0eq0 9277 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M  <_  0  <->  M  = 
0 ) )
2221biimpa 296 . . . . . 6  |-  ( ( M  e.  NN0  /\  M  <_  0 )  ->  M  =  0 )
2322fveq2d 5562 . . . . 5  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  =  ( ! `
 0 ) )
24 fac0 10820 . . . . . . 7  |-  ( ! `
 0 )  =  1
25 1re 8025 . . . . . . 7  |-  1  e.  RR
2624, 25eqeltri 2269 . . . . . 6  |-  ( ! `
 0 )  e.  RR
2726leidi 8512 . . . . 5  |-  ( ! `
 0 )  <_ 
( ! `  0
)
2823, 27eqbrtrdi 4072 . . . 4  |-  ( ( M  e.  NN0  /\  M  <_  0 )  -> 
( ! `  M
)  <_  ( ! `  0 ) )
29 impexp 263 . . . . 5  |-  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  <->  ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k )
) ) )
30 simpl 109 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  ->  M  e.  NN0 )
3130nn0zd 9446 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  ->  M  e.  ZZ )
32 peano2nn0 9289 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3332adantl 277 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  NN0 )
3433nn0zd 9446 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  ZZ )
35 zleloe 9373 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( M  <_ 
( k  +  1 )  <->  ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
3631, 34, 35syl2anc 411 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  <-> 
( M  <  (
k  +  1 )  \/  M  =  ( k  +  1 ) ) ) )
37 nn0leltp1 9389 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  <->  M  <  ( k  +  1 ) ) )
38 faccl 10827 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3938nnred 9003 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  RR )
40 nn0re 9258 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  k  e.  RR )
41 peano2re 8162 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  RR )
4338nnnn0d 9302 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( ! `
 k )  e. 
NN0 )
4443nn0ge0d 9305 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  0  <_ 
( ! `  k
) )
45 nn0p1nn 9288 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
4645nnge1d 9033 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  1  <_ 
( k  +  1 ) )
4739, 42, 44, 46lemulge11d 8964 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ( ! `  k )  x.  (
k  +  1 ) ) )
48 facp1 10822 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
4947, 48breqtrrd 4061 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  ( ! `
 k )  <_ 
( ! `  (
k  +  1 ) ) )
5049adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  <_  ( ! `  ( k  +  1 ) ) )
51 faccl 10827 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  NN )
5251nnred 9003 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  NN0  ->  ( ! `
 M )  e.  RR )
5352adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  M
)  e.  RR )
5439adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  k
)  e.  RR )
5532faccld 10828 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  NN )
5655nnred 9003 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  e.  RR )
5756adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  e.  RR )
58 letr 8109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ! `  M
)  e.  RR  /\  ( ! `  k )  e.  RR  /\  ( ! `  ( k  +  1 ) )  e.  RR )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
5953, 54, 57, 58syl3anc 1249 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ! `
 M )  <_ 
( ! `  k
)  /\  ( ! `  k )  <_  ( ! `  ( k  +  1 ) ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6050, 59mpan2d 428 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ! `  M )  <_  ( ! `  k )  ->  ( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) )
6160imim2d 54 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
6261com23 78 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  k  ->  ( ( M  <_ 
k  ->  ( ! `  M )  <_  ( ! `  k )
)  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
6337, 62sylbird 170 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
64 fveq2 5558 . . . . . . . . . . . . . . 15  |-  ( M  =  ( k  +  1 )  ->  ( ! `  M )  =  ( ! `  ( k  +  1 ) ) )
6552leidd 8541 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( ! `
 M )  <_ 
( ! `  M
) )
66 breq2 4037 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  (
( ! `  M
)  <_  ( ! `  M )  <->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
6765, 66syl5ibcom 155 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  ->  ( ( ! `  M )  =  ( ! `  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6864, 67syl5 32 . . . . . . . . . . . . . 14  |-  ( M  e.  NN0  ->  ( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) )
6968adantr 276 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) )
7069a1dd 48 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  =  ( k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7163, 70jaod 718 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( ( M  < 
( k  +  1 )  \/  M  =  ( k  +  1 ) )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) )
7236, 71sylbid 150 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  k  e.  NN0 )  -> 
( M  <_  (
k  +  1 )  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k
) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7372ex 115 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( k  e.  NN0  ->  ( M  <_  ( k  +  1 )  ->  (
( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7473com13 80 . . . . . . . 8  |-  ( M  <_  ( k  +  1 )  ->  (
k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ! `  M
)  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7574com4l 84 . . . . . . 7  |-  ( k  e.  NN0  ->  ( M  e.  NN0  ->  ( ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) )  -> 
( M  <_  (
k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7675a2d 26 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( M  e. 
NN0  ->  ( M  <_ 
( k  +  1 )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) ) )
7776imp4a 349 . . . . 5  |-  ( k  e.  NN0  ->  ( ( M  e.  NN0  ->  ( M  <_  k  ->  ( ! `  M )  <_  ( ! `  k ) ) )  ->  ( ( M  e.  NN0  /\  M  <_ 
( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  (
k  +  1 ) ) ) ) )
7829, 77biimtrid 152 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( M  e.  NN0  /\  M  <_  k )  ->  ( ! `  M
)  <_  ( ! `  k ) )  -> 
( ( M  e. 
NN0  /\  M  <_  ( k  +  1 ) )  ->  ( ! `  M )  <_  ( ! `  ( k  +  1 ) ) ) ) )
795, 10, 15, 20, 28, 78nn0ind 9440 . . 3  |-  ( N  e.  NN0  ->  ( ( M  e.  NN0  /\  M  <_  N )  -> 
( ! `  M
)  <_  ( ! `  N ) ) )
80793impib 1203 . 2  |-  ( ( N  e.  NN0  /\  M  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
81803com12 1209 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062   NN0cn0 9249   ZZcz 9326   !cfa 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-fac 10818
This theorem is referenced by:  facavg  10838
  Copyright terms: Public domain W3C validator