ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ledivnn Unicode version

Theorem nn0ledivnn 9823
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nn0ledivnn  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B
)  <_  A )

Proof of Theorem nn0ledivnn
StepHypRef Expression
1 elnn0 9232 . . 3  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 nnge1 8995 . . . . . . 7  |-  ( B  e.  NN  ->  1  <_  B )
32adantl 277 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  1  <_  B )
4 nnrp 9719 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  RR+ )
5 nnledivrp 9822 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( 1  <_  B  <->  ( A  /  B )  <_  A ) )
64, 5sylan2 286 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 1  <_  B  <->  ( A  /  B )  <_  A ) )
73, 6mpbid 147 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B
)  <_  A )
87ex 115 . . . 4  |-  ( A  e.  NN  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A ) )
9 nncn 8980 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  CC )
10 nnap0 9001 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B #  0 )
119, 10jca 306 . . . . . . . . 9  |-  ( B  e.  NN  ->  ( B  e.  CC  /\  B #  0 ) )
1211adantl 277 . . . . . . . 8  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( B  e.  CC  /\  B #  0 ) )
13 div0ap 8711 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
0  /  B )  =  0 )
1412, 13syl 14 . . . . . . 7  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( 0  /  B )  =  0 )
15 0le0 9061 . . . . . . 7  |-  0  <_  0
1614, 15eqbrtrdi 4068 . . . . . 6  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( 0  /  B )  <_  0
)
17 oveq1 5917 . . . . . . . 8  |-  ( A  =  0  ->  ( A  /  B )  =  ( 0  /  B
) )
18 id 19 . . . . . . . 8  |-  ( A  =  0  ->  A  =  0 )
1917, 18breq12d 4042 . . . . . . 7  |-  ( A  =  0  ->  (
( A  /  B
)  <_  A  <->  ( 0  /  B )  <_ 
0 ) )
2019adantr 276 . . . . . 6  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( A  /  B )  <_  A 
<->  ( 0  /  B
)  <_  0 ) )
2116, 20mpbird 167 . . . . 5  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( A  /  B )  <_  A
)
2221ex 115 . . . 4  |-  ( A  =  0  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A ) )
238, 22jaoi 717 . . 3  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A
) )
241, 23sylbi 121 . 2  |-  ( A  e.  NN0  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A ) )
2524imp 124 1  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B
)  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5910   CCcc 7860   0cc0 7862   1c1 7863    <_ cle 8045   # cap 8590    / cdiv 8681   NNcn 8972   NN0cn0 9230   RR+crp 9709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4322  df-po 4325  df-iso 4326  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-iota 5207  df-fun 5248  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-inn 8973  df-n0 9231  df-rp 9710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator