ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ledivnn Unicode version

Theorem nn0ledivnn 9786
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nn0ledivnn  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B
)  <_  A )

Proof of Theorem nn0ledivnn
StepHypRef Expression
1 elnn0 9197 . . 3  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 nnge1 8961 . . . . . . 7  |-  ( B  e.  NN  ->  1  <_  B )
32adantl 277 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  1  <_  B )
4 nnrp 9682 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  RR+ )
5 nnledivrp 9785 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  -> 
( 1  <_  B  <->  ( A  /  B )  <_  A ) )
64, 5sylan2 286 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 1  <_  B  <->  ( A  /  B )  <_  A ) )
73, 6mpbid 147 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  B
)  <_  A )
87ex 115 . . . 4  |-  ( A  e.  NN  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A ) )
9 nncn 8946 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  CC )
10 nnap0 8967 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B #  0 )
119, 10jca 306 . . . . . . . . 9  |-  ( B  e.  NN  ->  ( B  e.  CC  /\  B #  0 ) )
1211adantl 277 . . . . . . . 8  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( B  e.  CC  /\  B #  0 ) )
13 div0ap 8678 . . . . . . . 8  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
0  /  B )  =  0 )
1412, 13syl 14 . . . . . . 7  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( 0  /  B )  =  0 )
15 0le0 9027 . . . . . . 7  |-  0  <_  0
1614, 15eqbrtrdi 4057 . . . . . 6  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( 0  /  B )  <_  0
)
17 oveq1 5898 . . . . . . . 8  |-  ( A  =  0  ->  ( A  /  B )  =  ( 0  /  B
) )
18 id 19 . . . . . . . 8  |-  ( A  =  0  ->  A  =  0 )
1917, 18breq12d 4031 . . . . . . 7  |-  ( A  =  0  ->  (
( A  /  B
)  <_  A  <->  ( 0  /  B )  <_ 
0 ) )
2019adantr 276 . . . . . 6  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( ( A  /  B )  <_  A 
<->  ( 0  /  B
)  <_  0 ) )
2116, 20mpbird 167 . . . . 5  |-  ( ( A  =  0  /\  B  e.  NN )  ->  ( A  /  B )  <_  A
)
2221ex 115 . . . 4  |-  ( A  =  0  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A ) )
238, 22jaoi 717 . . 3  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A
) )
241, 23sylbi 121 . 2  |-  ( A  e.  NN0  ->  ( B  e.  NN  ->  ( A  /  B )  <_  A ) )
2524imp 124 1  |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  /  B
)  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5891   CCcc 7828   0cc0 7830   1c1 7831    <_ cle 8012   # cap 8557    / cdiv 8648   NNcn 8938   NN0cn0 9195   RR+crp 9672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-n0 9196  df-rp 9673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator