| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrdi | GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
| Ref | Expression |
|---|---|
| eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
| 2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 4092 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mpbiri 168 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: eqbrtrrdi 4122 pm54.43 7359 recapb 8814 nn0ledivnn 9959 xltnegi 10027 leexp1a 10811 facwordi 10957 faclbnd3 10960 resqrexlemlo 11519 efap0 12183 dvds1 12359 en1top 14745 dvef 15395 rpabscxpbnd 15608 zabsle1 15672 lgseisen 15747 lgsquadlem2 15751 trirec0 16371 |
| Copyright terms: Public domain | W3C validator |