ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrdi GIF version

Theorem eqbrtrdi 4082
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrdi.1 (𝜑𝐴 = 𝐵)
eqbrtrdi.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtrdi (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrdi
StepHypRef Expression
1 eqbrtrdi.2 . 2 𝐵𝑅𝐶
2 eqbrtrdi.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 4053 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mpbiri 168 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372   class class class wbr 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044
This theorem is referenced by:  eqbrtrrdi  4083  pm54.43  7297  recapb  8743  nn0ledivnn  9888  xltnegi  9956  leexp1a  10737  facwordi  10883  faclbnd3  10886  resqrexlemlo  11266  efap0  11930  dvds1  12106  en1top  14491  dvef  15141  rpabscxpbnd  15354  zabsle1  15418  lgseisen  15493  lgsquadlem2  15497  trirec0  15916
  Copyright terms: Public domain W3C validator