ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrdi GIF version

Theorem eqbrtrdi 4072
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrdi.1 (𝜑𝐴 = 𝐵)
eqbrtrdi.2 𝐵𝑅𝐶
Assertion
Ref Expression
eqbrtrdi (𝜑𝐴𝑅𝐶)

Proof of Theorem eqbrtrdi
StepHypRef Expression
1 eqbrtrdi.2 . 2 𝐵𝑅𝐶
2 eqbrtrdi.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 4043 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mpbiri 168 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  eqbrtrrdi  4073  pm54.43  7257  recapb  8698  nn0ledivnn  9842  xltnegi  9910  leexp1a  10686  facwordi  10832  faclbnd3  10835  resqrexlemlo  11178  efap0  11842  dvds1  12018  en1top  14313  dvef  14963  rpabscxpbnd  15176  zabsle1  15240  lgseisen  15315  lgsquadlem2  15319  trirec0  15688
  Copyright terms: Public domain W3C validator