ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1top Unicode version

Theorem en1top 14664
Description:  { (/)
} is the only topology with one element. (Contributed by FL, 18-Aug-2008.)
Assertion
Ref Expression
en1top  |-  ( J  e.  Top  ->  ( J  ~~  1o  <->  J  =  { (/) } ) )

Proof of Theorem en1top
StepHypRef Expression
1 0opn 14593 . . 3  |-  ( J  e.  Top  ->  (/)  e.  J
)
2 en1eqsn 7076 . . . 4  |-  ( (
(/)  e.  J  /\  J  ~~  1o )  ->  J  =  { (/) } )
32ex 115 . . 3  |-  ( (/)  e.  J  ->  ( J 
~~  1o  ->  J  =  { (/) } ) )
41, 3syl 14 . 2  |-  ( J  e.  Top  ->  ( J  ~~  1o  ->  J  =  { (/) } ) )
5 id 19 . . 3  |-  ( J  =  { (/) }  ->  J  =  { (/) } )
6 0ex 4187 . . . 4  |-  (/)  e.  _V
76ensn1 6911 . . 3  |-  { (/) } 
~~  1o
85, 7eqbrtrdi 4098 . 2  |-  ( J  =  { (/) }  ->  J 
~~  1o )
94, 8impbid1 142 1  |-  ( J  e.  Top  ->  ( J  ~~  1o  <->  J  =  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   (/)c0 3468   {csn 3643   class class class wbr 4059   1oc1o 6518    ~~ cen 6848   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853  df-top 14585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator