ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1top Unicode version

Theorem en1top 11945
Description:  { (/)
} is the only topology with one element. (Contributed by FL, 18-Aug-2008.)
Assertion
Ref Expression
en1top  |-  ( J  e.  Top  ->  ( J  ~~  1o  <->  J  =  { (/) } ) )

Proof of Theorem en1top
StepHypRef Expression
1 0opn 11873 . . 3  |-  ( J  e.  Top  ->  (/)  e.  J
)
2 en1eqsn 6737 . . . 4  |-  ( (
(/)  e.  J  /\  J  ~~  1o )  ->  J  =  { (/) } )
32ex 114 . . 3  |-  ( (/)  e.  J  ->  ( J 
~~  1o  ->  J  =  { (/) } ) )
41, 3syl 14 . 2  |-  ( J  e.  Top  ->  ( J  ~~  1o  ->  J  =  { (/) } ) )
5 id 19 . . 3  |-  ( J  =  { (/) }  ->  J  =  { (/) } )
6 0ex 3987 . . . 4  |-  (/)  e.  _V
76ensn1 6593 . . 3  |-  { (/) } 
~~  1o
85, 7syl6eqbr 3904 . 2  |-  ( J  =  { (/) }  ->  J 
~~  1o )
94, 8impbid1 141 1  |-  ( J  e.  Top  ->  ( J  ~~  1o  <->  J  =  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1296    e. wcel 1445   (/)c0 3302   {csn 3466   class class class wbr 3867   1oc1o 6212    ~~ cen 6535   Topctop 11864
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1o 6219  df-er 6332  df-en 6538  df-fin 6540  df-top 11865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator