ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd3 Unicode version

Theorem faclbnd3 10375
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 8876 . 2  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 nnre 8630 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  RR )
32adantr 272 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  ->  M  e.  RR )
4 nnge1 8646 . . . . . 6  |-  ( M  e.  NN  ->  1  <_  M )
54adantr 272 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
1  <_  M )
6 nn0z 8971 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
76adantl 273 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  ->  N  e.  ZZ )
8 uzid 9235 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
9 peano2uz 9273 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
107, 8, 93syl 17 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  ( ZZ>= `  N ) )
113, 5, 10leexp2ad 10339 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( M ^ ( N  + 
1 ) ) )
12 nnnn0 8881 . . . . 5  |-  ( M  e.  NN  ->  M  e.  NN0 )
13 faclbnd 10373 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
1412, 13sylan 279 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
15 nn0re 8883 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  RR )
16 reexpcl 10196 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
1715, 16sylan 279 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
18 peano2nn0 8914 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
19 reexpcl 10196 . . . . . . 7  |-  ( ( M  e.  RR  /\  ( N  +  1
)  e.  NN0 )  ->  ( M ^ ( N  +  1 ) )  e.  RR )
2015, 18, 19syl2an 285 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  e.  RR )
21 reexpcl 10196 . . . . . . . 8  |-  ( ( M  e.  RR  /\  M  e.  NN0 )  -> 
( M ^ M
)  e.  RR )
2215, 21mpancom 416 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M ^ M )  e.  RR )
23 faccl 10367 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2423nnred 8636 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
25 remulcl 7665 . . . . . . 7  |-  ( ( ( M ^ M
)  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( M ^ M )  x.  ( ! `  N )
)  e.  RR )
2622, 24, 25syl2an 285 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  N )
)  e.  RR )
27 letr 7763 . . . . . 6  |-  ( ( ( M ^ N
)  e.  RR  /\  ( M ^ ( N  +  1 ) )  e.  RR  /\  (
( M ^ M
)  x.  ( ! `
 N ) )  e.  RR )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2817, 20, 26, 27syl3anc 1197 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2912, 28sylan 279 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
3011, 14, 29mp2and 427 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
31 elnn0 8876 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32 0exp 10214 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0 ^ N )  =  0 )
33 0le1 8155 . . . . . . . . 9  |-  0  <_  1
3432, 33syl6eqbr 3930 . . . . . . . 8  |-  ( N  e.  NN  ->  (
0 ^ N )  <_  1 )
35 oveq2 5734 . . . . . . . . 9  |-  ( N  =  0  ->  (
0 ^ N )  =  ( 0 ^ 0 ) )
36 0exp0e1 10184 . . . . . . . . . 10  |-  ( 0 ^ 0 )  =  1
37 1le1 8245 . . . . . . . . . 10  |-  1  <_  1
3836, 37eqbrtri 3912 . . . . . . . . 9  |-  ( 0 ^ 0 )  <_ 
1
3935, 38syl6eqbr 3930 . . . . . . . 8  |-  ( N  =  0  ->  (
0 ^ N )  <_  1 )
4034, 39jaoi 688 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( 0 ^ N )  <_  1
)
4131, 40sylbi 120 . . . . . 6  |-  ( N  e.  NN0  ->  ( 0 ^ N )  <_ 
1 )
42 1nn 8634 . . . . . . . 8  |-  1  e.  NN
43 nnmulcl 8644 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  ( ! `  N )  e.  NN )  -> 
( 1  x.  ( ! `  N )
)  e.  NN )
4442, 23, 43sylancr 408 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  e.  NN )
4544nnge1d 8666 . . . . . 6  |-  ( N  e.  NN0  ->  1  <_ 
( 1  x.  ( ! `  N )
) )
46 0re 7683 . . . . . . . 8  |-  0  e.  RR
47 reexpcl 10196 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  N  e.  NN0 )  -> 
( 0 ^ N
)  e.  RR )
4846, 47mpan 418 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 0 ^ N )  e.  RR )
49 1re 7682 . . . . . . . 8  |-  1  e.  RR
50 remulcl 7665 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( 1  x.  ( ! `  N )
)  e.  RR )
5149, 24, 50sylancr 408 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  e.  RR )
52 letr 7763 . . . . . . . 8  |-  ( ( ( 0 ^ N
)  e.  RR  /\  1  e.  RR  /\  (
1  x.  ( ! `
 N ) )  e.  RR )  -> 
( ( ( 0 ^ N )  <_ 
1  /\  1  <_  ( 1  x.  ( ! `
 N ) ) )  ->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) ) )
5349, 52mp3an2 1284 . . . . . . 7  |-  ( ( ( 0 ^ N
)  e.  RR  /\  ( 1  x.  ( ! `  N )
)  e.  RR )  ->  ( ( ( 0 ^ N )  <_  1  /\  1  <_  ( 1  x.  ( ! `  N )
) )  ->  (
0 ^ N )  <_  ( 1  x.  ( ! `  N
) ) ) )
5448, 51, 53syl2anc 406 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 0 ^ N
)  <_  1  /\  1  <_  ( 1  x.  ( ! `  N
) ) )  -> 
( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) ) )
5541, 45, 54mp2and 427 . . . . 5  |-  ( N  e.  NN0  ->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) )
5655adantl 273 . . . 4  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) )
57 oveq1 5733 . . . . . 6  |-  ( M  =  0  ->  ( M ^ N )  =  ( 0 ^ N
) )
58 oveq12 5735 . . . . . . . . 9  |-  ( ( M  =  0  /\  M  =  0 )  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
5958anidms 392 . . . . . . . 8  |-  ( M  =  0  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
6059, 36syl6eq 2161 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ M )  =  1 )
6160oveq1d 5741 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ M
)  x.  ( ! `
 N ) )  =  ( 1  x.  ( ! `  N
) ) )
6257, 61breq12d 3906 . . . . 5  |-  ( M  =  0  ->  (
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) )  <->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) ) )
6362adantr 272 . . . 4  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( ( M ^ N )  <_  (
( M ^ M
)  x.  ( ! `
 N ) )  <-> 
( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) ) )
6456, 63mpbird 166 . . 3  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
6530, 64jaoian 767 . 2  |-  ( ( ( M  e.  NN  \/  M  =  0
)  /\  N  e.  NN0 )  ->  ( M ^ N )  <_  (
( M ^ M
)  x.  ( ! `
 N ) ) )
661, 65sylanb 280 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    = wceq 1312    e. wcel 1461   class class class wbr 3893   ` cfv 5079  (class class class)co 5726   RRcr 7539   0cc0 7540   1c1 7541    + caddc 7543    x. cmul 7545    <_ cle 7718   NNcn 8623   NN0cn0 8874   ZZcz 8951   ZZ>=cuz 9221   ^cexp 10178   !cfa 10357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-mulrcl 7637  ax-addcom 7638  ax-mulcom 7639  ax-addass 7640  ax-mulass 7641  ax-distr 7642  ax-i2m1 7643  ax-0lt1 7644  ax-1rid 7645  ax-0id 7646  ax-rnegex 7647  ax-precex 7648  ax-cnre 7649  ax-pre-ltirr 7650  ax-pre-ltwlin 7651  ax-pre-lttrn 7652  ax-pre-apti 7653  ax-pre-ltadd 7654  ax-pre-mulgt0 7655  ax-pre-mulext 7656
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5989  df-2nd 5990  df-recs 6153  df-frec 6239  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723  df-sub 7851  df-neg 7852  df-reap 8248  df-ap 8255  df-div 8339  df-inn 8624  df-n0 8875  df-z 8952  df-uz 9222  df-rp 9337  df-seqfrec 10105  df-exp 10179  df-fac 10358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator