ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd3 Unicode version

Theorem faclbnd3 10656
Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd3  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )

Proof of Theorem faclbnd3
StepHypRef Expression
1 elnn0 9116 . 2  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 nnre 8864 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  RR )
32adantr 274 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  ->  M  e.  RR )
4 nnge1 8880 . . . . . 6  |-  ( M  e.  NN  ->  1  <_  M )
54adantr 274 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
1  <_  M )
6 nn0z 9211 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
76adantl 275 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  ->  N  e.  ZZ )
8 uzid 9480 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
9 peano2uz 9521 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
107, 8, 93syl 17 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  ( ZZ>= `  N ) )
113, 5, 10leexp2ad 10617 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( M ^ ( N  + 
1 ) ) )
12 nnnn0 9121 . . . . 5  |-  ( M  e.  NN  ->  M  e.  NN0 )
13 faclbnd 10654 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
1412, 13sylan 281 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
15 nn0re 9123 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  RR )
16 reexpcl 10472 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
1715, 16sylan 281 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  e.  RR )
18 peano2nn0 9154 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
19 reexpcl 10472 . . . . . . 7  |-  ( ( M  e.  RR  /\  ( N  +  1
)  e.  NN0 )  ->  ( M ^ ( N  +  1 ) )  e.  RR )
2015, 18, 19syl2an 287 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ ( N  +  1 ) )  e.  RR )
21 reexpcl 10472 . . . . . . . 8  |-  ( ( M  e.  RR  /\  M  e.  NN0 )  -> 
( M ^ M
)  e.  RR )
2215, 21mpancom 419 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M ^ M )  e.  RR )
23 faccl 10648 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
2423nnred 8870 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  RR )
25 remulcl 7881 . . . . . . 7  |-  ( ( ( M ^ M
)  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( ( M ^ M )  x.  ( ! `  N )
)  e.  RR )
2622, 24, 25syl2an 287 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M ^ M )  x.  ( ! `  N )
)  e.  RR )
27 letr 7981 . . . . . 6  |-  ( ( ( M ^ N
)  e.  RR  /\  ( M ^ ( N  +  1 ) )  e.  RR  /\  (
( M ^ M
)  x.  ( ! `
 N ) )  e.  RR )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2817, 20, 26, 27syl3anc 1228 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
2912, 28sylan 281 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( ( ( M ^ N )  <_ 
( M ^ ( N  +  1 ) )  /\  ( M ^ ( N  + 
1 ) )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) )  ->  ( M ^ N )  <_ 
( ( M ^ M )  x.  ( ! `  N )
) ) )
3011, 14, 29mp2and 430 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
31 elnn0 9116 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
32 0exp 10490 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
0 ^ N )  =  0 )
33 0le1 8379 . . . . . . . . 9  |-  0  <_  1
3432, 33eqbrtrdi 4021 . . . . . . . 8  |-  ( N  e.  NN  ->  (
0 ^ N )  <_  1 )
35 oveq2 5850 . . . . . . . . 9  |-  ( N  =  0  ->  (
0 ^ N )  =  ( 0 ^ 0 ) )
36 0exp0e1 10460 . . . . . . . . . 10  |-  ( 0 ^ 0 )  =  1
37 1le1 8470 . . . . . . . . . 10  |-  1  <_  1
3836, 37eqbrtri 4003 . . . . . . . . 9  |-  ( 0 ^ 0 )  <_ 
1
3935, 38eqbrtrdi 4021 . . . . . . . 8  |-  ( N  =  0  ->  (
0 ^ N )  <_  1 )
4034, 39jaoi 706 . . . . . . 7  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( 0 ^ N )  <_  1
)
4131, 40sylbi 120 . . . . . 6  |-  ( N  e.  NN0  ->  ( 0 ^ N )  <_ 
1 )
42 1nn 8868 . . . . . . . 8  |-  1  e.  NN
43 nnmulcl 8878 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  ( ! `  N )  e.  NN )  -> 
( 1  x.  ( ! `  N )
)  e.  NN )
4442, 23, 43sylancr 411 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  e.  NN )
4544nnge1d 8900 . . . . . 6  |-  ( N  e.  NN0  ->  1  <_ 
( 1  x.  ( ! `  N )
) )
46 0re 7899 . . . . . . . 8  |-  0  e.  RR
47 reexpcl 10472 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  N  e.  NN0 )  -> 
( 0 ^ N
)  e.  RR )
4846, 47mpan 421 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 0 ^ N )  e.  RR )
49 1re 7898 . . . . . . . 8  |-  1  e.  RR
50 remulcl 7881 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ! `  N )  e.  RR )  -> 
( 1  x.  ( ! `  N )
)  e.  RR )
5149, 24, 50sylancr 411 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  x.  ( ! `  N ) )  e.  RR )
52 letr 7981 . . . . . . . 8  |-  ( ( ( 0 ^ N
)  e.  RR  /\  1  e.  RR  /\  (
1  x.  ( ! `
 N ) )  e.  RR )  -> 
( ( ( 0 ^ N )  <_ 
1  /\  1  <_  ( 1  x.  ( ! `
 N ) ) )  ->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) ) )
5349, 52mp3an2 1315 . . . . . . 7  |-  ( ( ( 0 ^ N
)  e.  RR  /\  ( 1  x.  ( ! `  N )
)  e.  RR )  ->  ( ( ( 0 ^ N )  <_  1  /\  1  <_  ( 1  x.  ( ! `  N )
) )  ->  (
0 ^ N )  <_  ( 1  x.  ( ! `  N
) ) ) )
5448, 51, 53syl2anc 409 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( ( 0 ^ N
)  <_  1  /\  1  <_  ( 1  x.  ( ! `  N
) ) )  -> 
( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) ) )
5541, 45, 54mp2and 430 . . . . 5  |-  ( N  e.  NN0  ->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) )
5655adantl 275 . . . 4  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) )
57 oveq1 5849 . . . . . 6  |-  ( M  =  0  ->  ( M ^ N )  =  ( 0 ^ N
) )
58 oveq12 5851 . . . . . . . . 9  |-  ( ( M  =  0  /\  M  =  0 )  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
5958anidms 395 . . . . . . . 8  |-  ( M  =  0  ->  ( M ^ M )  =  ( 0 ^ 0 ) )
6059, 36eqtrdi 2215 . . . . . . 7  |-  ( M  =  0  ->  ( M ^ M )  =  1 )
6160oveq1d 5857 . . . . . 6  |-  ( M  =  0  ->  (
( M ^ M
)  x.  ( ! `
 N ) )  =  ( 1  x.  ( ! `  N
) ) )
6257, 61breq12d 3995 . . . . 5  |-  ( M  =  0  ->  (
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) )  <->  ( 0 ^ N )  <_ 
( 1  x.  ( ! `  N )
) ) )
6362adantr 274 . . . 4  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( ( M ^ N )  <_  (
( M ^ M
)  x.  ( ! `
 N ) )  <-> 
( 0 ^ N
)  <_  ( 1  x.  ( ! `  N ) ) ) )
6456, 63mpbird 166 . . 3  |-  ( ( M  =  0  /\  N  e.  NN0 )  ->  ( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
6530, 64jaoian 785 . 2  |-  ( ( ( M  e.  NN  \/  M  =  0
)  /\  N  e.  NN0 )  ->  ( M ^ N )  <_  (
( M ^ M
)  x.  ( ! `
 N ) ) )
661, 65sylanb 282 1  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M ^ N
)  <_  ( ( M ^ M )  x.  ( ! `  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    <_ cle 7934   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ^cexp 10454   !cfa 10638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-fac 10639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator