| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faclbnd3 | Unicode version | ||
| Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
| Ref | Expression |
|---|---|
| faclbnd3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9299 |
. 2
| |
| 2 | nnre 9045 |
. . . . . 6
| |
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | nnge1 9061 |
. . . . . 6
| |
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | nn0z 9394 |
. . . . . . 7
| |
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | uzid 9664 |
. . . . . 6
| |
| 9 | peano2uz 9706 |
. . . . . 6
| |
| 10 | 7, 8, 9 | 3syl 17 |
. . . . 5
|
| 11 | 3, 5, 10 | leexp2ad 10849 |
. . . 4
|
| 12 | nnnn0 9304 |
. . . . 5
| |
| 13 | faclbnd 10888 |
. . . . 5
| |
| 14 | 12, 13 | sylan 283 |
. . . 4
|
| 15 | nn0re 9306 |
. . . . . . 7
| |
| 16 | reexpcl 10703 |
. . . . . . 7
| |
| 17 | 15, 16 | sylan 283 |
. . . . . 6
|
| 18 | peano2nn0 9337 |
. . . . . . 7
| |
| 19 | reexpcl 10703 |
. . . . . . 7
| |
| 20 | 15, 18, 19 | syl2an 289 |
. . . . . 6
|
| 21 | reexpcl 10703 |
. . . . . . . 8
| |
| 22 | 15, 21 | mpancom 422 |
. . . . . . 7
|
| 23 | faccl 10882 |
. . . . . . . 8
| |
| 24 | 23 | nnred 9051 |
. . . . . . 7
|
| 25 | remulcl 8055 |
. . . . . . 7
| |
| 26 | 22, 24, 25 | syl2an 289 |
. . . . . 6
|
| 27 | letr 8157 |
. . . . . 6
| |
| 28 | 17, 20, 26, 27 | syl3anc 1250 |
. . . . 5
|
| 29 | 12, 28 | sylan 283 |
. . . 4
|
| 30 | 11, 14, 29 | mp2and 433 |
. . 3
|
| 31 | elnn0 9299 |
. . . . . . 7
| |
| 32 | 0exp 10721 |
. . . . . . . . 9
| |
| 33 | 0le1 8556 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eqbrtrdi 4084 |
. . . . . . . 8
|
| 35 | oveq2 5954 |
. . . . . . . . 9
| |
| 36 | 0exp0e1 10691 |
. . . . . . . . . 10
| |
| 37 | 1le1 8647 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | eqbrtri 4066 |
. . . . . . . . 9
|
| 39 | 35, 38 | eqbrtrdi 4084 |
. . . . . . . 8
|
| 40 | 34, 39 | jaoi 718 |
. . . . . . 7
|
| 41 | 31, 40 | sylbi 121 |
. . . . . 6
|
| 42 | 1nn 9049 |
. . . . . . . 8
| |
| 43 | nnmulcl 9059 |
. . . . . . . 8
| |
| 44 | 42, 23, 43 | sylancr 414 |
. . . . . . 7
|
| 45 | 44 | nnge1d 9081 |
. . . . . 6
|
| 46 | 0re 8074 |
. . . . . . . 8
| |
| 47 | reexpcl 10703 |
. . . . . . . 8
| |
| 48 | 46, 47 | mpan 424 |
. . . . . . 7
|
| 49 | 1re 8073 |
. . . . . . . 8
| |
| 50 | remulcl 8055 |
. . . . . . . 8
| |
| 51 | 49, 24, 50 | sylancr 414 |
. . . . . . 7
|
| 52 | letr 8157 |
. . . . . . . 8
| |
| 53 | 49, 52 | mp3an2 1338 |
. . . . . . 7
|
| 54 | 48, 51, 53 | syl2anc 411 |
. . . . . 6
|
| 55 | 41, 45, 54 | mp2and 433 |
. . . . 5
|
| 56 | 55 | adantl 277 |
. . . 4
|
| 57 | oveq1 5953 |
. . . . . 6
| |
| 58 | oveq12 5955 |
. . . . . . . . 9
| |
| 59 | 58 | anidms 397 |
. . . . . . . 8
|
| 60 | 59, 36 | eqtrdi 2254 |
. . . . . . 7
|
| 61 | 60 | oveq1d 5961 |
. . . . . 6
|
| 62 | 57, 61 | breq12d 4058 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | 56, 63 | mpbird 167 |
. . 3
|
| 65 | 30, 64 | jaoian 797 |
. 2
|
| 66 | 1, 65 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-rp 9778 df-seqfrec 10595 df-exp 10686 df-fac 10873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |