| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faclbnd3 | Unicode version | ||
| Description: A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.) |
| Ref | Expression |
|---|---|
| faclbnd3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9332 |
. 2
| |
| 2 | nnre 9078 |
. . . . . 6
| |
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | nnge1 9094 |
. . . . . 6
| |
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | nn0z 9427 |
. . . . . . 7
| |
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | uzid 9697 |
. . . . . 6
| |
| 9 | peano2uz 9739 |
. . . . . 6
| |
| 10 | 7, 8, 9 | 3syl 17 |
. . . . 5
|
| 11 | 3, 5, 10 | leexp2ad 10884 |
. . . 4
|
| 12 | nnnn0 9337 |
. . . . 5
| |
| 13 | faclbnd 10923 |
. . . . 5
| |
| 14 | 12, 13 | sylan 283 |
. . . 4
|
| 15 | nn0re 9339 |
. . . . . . 7
| |
| 16 | reexpcl 10738 |
. . . . . . 7
| |
| 17 | 15, 16 | sylan 283 |
. . . . . 6
|
| 18 | peano2nn0 9370 |
. . . . . . 7
| |
| 19 | reexpcl 10738 |
. . . . . . 7
| |
| 20 | 15, 18, 19 | syl2an 289 |
. . . . . 6
|
| 21 | reexpcl 10738 |
. . . . . . . 8
| |
| 22 | 15, 21 | mpancom 422 |
. . . . . . 7
|
| 23 | faccl 10917 |
. . . . . . . 8
| |
| 24 | 23 | nnred 9084 |
. . . . . . 7
|
| 25 | remulcl 8088 |
. . . . . . 7
| |
| 26 | 22, 24, 25 | syl2an 289 |
. . . . . 6
|
| 27 | letr 8190 |
. . . . . 6
| |
| 28 | 17, 20, 26, 27 | syl3anc 1250 |
. . . . 5
|
| 29 | 12, 28 | sylan 283 |
. . . 4
|
| 30 | 11, 14, 29 | mp2and 433 |
. . 3
|
| 31 | elnn0 9332 |
. . . . . . 7
| |
| 32 | 0exp 10756 |
. . . . . . . . 9
| |
| 33 | 0le1 8589 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eqbrtrdi 4098 |
. . . . . . . 8
|
| 35 | oveq2 5975 |
. . . . . . . . 9
| |
| 36 | 0exp0e1 10726 |
. . . . . . . . . 10
| |
| 37 | 1le1 8680 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | eqbrtri 4080 |
. . . . . . . . 9
|
| 39 | 35, 38 | eqbrtrdi 4098 |
. . . . . . . 8
|
| 40 | 34, 39 | jaoi 718 |
. . . . . . 7
|
| 41 | 31, 40 | sylbi 121 |
. . . . . 6
|
| 42 | 1nn 9082 |
. . . . . . . 8
| |
| 43 | nnmulcl 9092 |
. . . . . . . 8
| |
| 44 | 42, 23, 43 | sylancr 414 |
. . . . . . 7
|
| 45 | 44 | nnge1d 9114 |
. . . . . 6
|
| 46 | 0re 8107 |
. . . . . . . 8
| |
| 47 | reexpcl 10738 |
. . . . . . . 8
| |
| 48 | 46, 47 | mpan 424 |
. . . . . . 7
|
| 49 | 1re 8106 |
. . . . . . . 8
| |
| 50 | remulcl 8088 |
. . . . . . . 8
| |
| 51 | 49, 24, 50 | sylancr 414 |
. . . . . . 7
|
| 52 | letr 8190 |
. . . . . . . 8
| |
| 53 | 49, 52 | mp3an2 1338 |
. . . . . . 7
|
| 54 | 48, 51, 53 | syl2anc 411 |
. . . . . 6
|
| 55 | 41, 45, 54 | mp2and 433 |
. . . . 5
|
| 56 | 55 | adantl 277 |
. . . 4
|
| 57 | oveq1 5974 |
. . . . . 6
| |
| 58 | oveq12 5976 |
. . . . . . . . 9
| |
| 59 | 58 | anidms 397 |
. . . . . . . 8
|
| 60 | 59, 36 | eqtrdi 2256 |
. . . . . . 7
|
| 61 | 60 | oveq1d 5982 |
. . . . . 6
|
| 62 | 57, 61 | breq12d 4072 |
. . . . 5
|
| 63 | 62 | adantr 276 |
. . . 4
|
| 64 | 56, 63 | mpbird 167 |
. . 3
|
| 65 | 30, 64 | jaoian 797 |
. 2
|
| 66 | 1, 65 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 df-fac 10908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |