ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpn2 Unicode version

Theorem infpn2 12518
Description: There exist infinitely many prime numbers: the set of all primes  S is unbounded by infpn 12404, so by unbendc 12516 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
Assertion
Ref Expression
infpn2  |-  S  ~~  NN
Distinct variable group:    m, n
Allowed substitution hints:    S( m, n)

Proof of Theorem infpn2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9602 . . . . . . 7  |-  ( r  e.  ( ZZ>= `  2
)  ->  r  e.  NN )
21adantr 276 . . . . . 6  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
3 simpll 527 . . . . . 6  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
4 eluz2b2 9639 . . . . . . . 8  |-  ( r  e.  ( ZZ>= `  2
)  <->  ( r  e.  NN  /\  1  < 
r ) )
54a1i 9 . . . . . . 7  |-  ( r  e.  NN  ->  (
r  e.  ( ZZ>= ` 
2 )  <->  ( r  e.  NN  /\  1  < 
r ) ) )
6 nndivdvds 11844 . . . . . . . . 9  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( m  ||  r  <->  ( r  /  m )  e.  NN ) )
76imbi1d 231 . . . . . . . 8  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( ( m  ||  r  ->  ( m  =  1  \/  m  =  r ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
87ralbidva 2486 . . . . . . 7  |-  ( r  e.  NN  ->  ( A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
95, 8anbi12d 473 . . . . . 6  |-  ( r  e.  NN  ->  (
( r  e.  (
ZZ>= `  2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
102, 3, 9pm5.21nii 705 . . . . 5  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
11 anass 401 . . . . 5  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
1210, 11bitri 184 . . . 4  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
13 isprm2 12160 . . . 4  |-  ( r  e.  Prime  <->  ( r  e.  ( ZZ>= `  2 )  /\  A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) ) ) )
14 breq2 4025 . . . . . 6  |-  ( n  =  r  ->  (
1  <  n  <->  1  <  r ) )
15 oveq1 5907 . . . . . . . . 9  |-  ( n  =  r  ->  (
n  /  m )  =  ( r  /  m ) )
1615eleq1d 2258 . . . . . . . 8  |-  ( n  =  r  ->  (
( n  /  m
)  e.  NN  <->  ( r  /  m )  e.  NN ) )
17 equequ2 1724 . . . . . . . . 9  |-  ( n  =  r  ->  (
m  =  n  <->  m  =  r ) )
1817orbi2d 791 . . . . . . . 8  |-  ( n  =  r  ->  (
( m  =  1  \/  m  =  n )  <->  ( m  =  1  \/  m  =  r ) ) )
1916, 18imbi12d 234 . . . . . . 7  |-  ( n  =  r  ->  (
( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
2019ralbidv 2490 . . . . . 6  |-  ( n  =  r  ->  ( A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
2114, 20anbi12d 473 . . . . 5  |-  ( n  =  r  ->  (
( 1  <  n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) )  <->  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
22 infpn2.1 . . . . 5  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
2321, 22elrab2 2911 . . . 4  |-  ( r  e.  S  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
2412, 13, 233bitr4i 212 . . 3  |-  ( r  e.  Prime  <->  r  e.  S
)
2524eqriv 2186 . 2  |-  Prime  =  S
26 prminf 12517 . 2  |-  Prime  ~~  NN
2725, 26eqbrtrri 4044 1  |-  S  ~~  NN
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160   A.wral 2468   {crab 2472   class class class wbr 4021   ` cfv 5238  (class class class)co 5900    ~~ cen 6768   1c1 7847    < clt 8027    / cdiv 8664   NNcn 8954   2c2 9005   ZZ>=cuz 9563    || cdvds 11835   Primecprime 12150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-isom 5247  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-1o 6445  df-2o 6446  df-er 6563  df-pm 6681  df-en 6771  df-dom 6772  df-fin 6773  df-sup 7017  df-inf 7018  df-dju 7071  df-inl 7080  df-inr 7081  df-case 7117  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-fz 10045  df-fzo 10179  df-fl 10307  df-mod 10360  df-seqfrec 10485  df-exp 10560  df-fac 10747  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049  df-dvds 11836  df-prm 12151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator