ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpn2 Unicode version

Theorem infpn2 12942
Description: There exist infinitely many prime numbers: the set of all primes  S is unbounded by infpn 12799, so by unbendc 12940 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
Assertion
Ref Expression
infpn2  |-  S  ~~  NN
Distinct variable group:    m, n
Allowed substitution hints:    S( m, n)

Proof of Theorem infpn2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9722 . . . . . . 7  |-  ( r  e.  ( ZZ>= `  2
)  ->  r  e.  NN )
21adantr 276 . . . . . 6  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
3 simpll 527 . . . . . 6  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
4 eluz2b2 9759 . . . . . . . 8  |-  ( r  e.  ( ZZ>= `  2
)  <->  ( r  e.  NN  /\  1  < 
r ) )
54a1i 9 . . . . . . 7  |-  ( r  e.  NN  ->  (
r  e.  ( ZZ>= ` 
2 )  <->  ( r  e.  NN  /\  1  < 
r ) ) )
6 nndivdvds 12222 . . . . . . . . 9  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( m  ||  r  <->  ( r  /  m )  e.  NN ) )
76imbi1d 231 . . . . . . . 8  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( ( m  ||  r  ->  ( m  =  1  \/  m  =  r ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
87ralbidva 2504 . . . . . . 7  |-  ( r  e.  NN  ->  ( A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
95, 8anbi12d 473 . . . . . 6  |-  ( r  e.  NN  ->  (
( r  e.  (
ZZ>= `  2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
102, 3, 9pm5.21nii 706 . . . . 5  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
11 anass 401 . . . . 5  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
1210, 11bitri 184 . . . 4  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
13 isprm2 12554 . . . 4  |-  ( r  e.  Prime  <->  ( r  e.  ( ZZ>= `  2 )  /\  A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) ) ) )
14 breq2 4063 . . . . . 6  |-  ( n  =  r  ->  (
1  <  n  <->  1  <  r ) )
15 oveq1 5974 . . . . . . . . 9  |-  ( n  =  r  ->  (
n  /  m )  =  ( r  /  m ) )
1615eleq1d 2276 . . . . . . . 8  |-  ( n  =  r  ->  (
( n  /  m
)  e.  NN  <->  ( r  /  m )  e.  NN ) )
17 equequ2 1737 . . . . . . . . 9  |-  ( n  =  r  ->  (
m  =  n  <->  m  =  r ) )
1817orbi2d 792 . . . . . . . 8  |-  ( n  =  r  ->  (
( m  =  1  \/  m  =  n )  <->  ( m  =  1  \/  m  =  r ) ) )
1916, 18imbi12d 234 . . . . . . 7  |-  ( n  =  r  ->  (
( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
2019ralbidv 2508 . . . . . 6  |-  ( n  =  r  ->  ( A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
2114, 20anbi12d 473 . . . . 5  |-  ( n  =  r  ->  (
( 1  <  n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) )  <->  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
22 infpn2.1 . . . . 5  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
2321, 22elrab2 2939 . . . 4  |-  ( r  e.  S  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
2412, 13, 233bitr4i 212 . . 3  |-  ( r  e.  Prime  <->  r  e.  S
)
2524eqriv 2204 . 2  |-  Prime  =  S
26 prminf 12941 . 2  |-  Prime  ~~  NN
2725, 26eqbrtrri 4082 1  |-  S  ~~  NN
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   class class class wbr 4059   ` cfv 5290  (class class class)co 5967    ~~ cen 6848   1c1 7961    < clt 8142    / cdiv 8780   NNcn 9071   2c2 9122   ZZ>=cuz 9683    || cdvds 12213   Primecprime 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-pm 6761  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-dju 7166  df-inl 7175  df-inr 7176  df-case 7212  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-prm 12545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator