ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpn2 Unicode version

Theorem infpn2 12827
Description: There exist infinitely many prime numbers: the set of all primes  S is unbounded by infpn 12684, so by unbendc 12825 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
Assertion
Ref Expression
infpn2  |-  S  ~~  NN
Distinct variable group:    m, n
Allowed substitution hints:    S( m, n)

Proof of Theorem infpn2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9687 . . . . . . 7  |-  ( r  e.  ( ZZ>= `  2
)  ->  r  e.  NN )
21adantr 276 . . . . . 6  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
3 simpll 527 . . . . . 6  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
4 eluz2b2 9724 . . . . . . . 8  |-  ( r  e.  ( ZZ>= `  2
)  <->  ( r  e.  NN  /\  1  < 
r ) )
54a1i 9 . . . . . . 7  |-  ( r  e.  NN  ->  (
r  e.  ( ZZ>= ` 
2 )  <->  ( r  e.  NN  /\  1  < 
r ) ) )
6 nndivdvds 12107 . . . . . . . . 9  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( m  ||  r  <->  ( r  /  m )  e.  NN ) )
76imbi1d 231 . . . . . . . 8  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( ( m  ||  r  ->  ( m  =  1  \/  m  =  r ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
87ralbidva 2502 . . . . . . 7  |-  ( r  e.  NN  ->  ( A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
95, 8anbi12d 473 . . . . . 6  |-  ( r  e.  NN  ->  (
( r  e.  (
ZZ>= `  2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
102, 3, 9pm5.21nii 706 . . . . 5  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
11 anass 401 . . . . 5  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
1210, 11bitri 184 . . . 4  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
13 isprm2 12439 . . . 4  |-  ( r  e.  Prime  <->  ( r  e.  ( ZZ>= `  2 )  /\  A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) ) ) )
14 breq2 4048 . . . . . 6  |-  ( n  =  r  ->  (
1  <  n  <->  1  <  r ) )
15 oveq1 5951 . . . . . . . . 9  |-  ( n  =  r  ->  (
n  /  m )  =  ( r  /  m ) )
1615eleq1d 2274 . . . . . . . 8  |-  ( n  =  r  ->  (
( n  /  m
)  e.  NN  <->  ( r  /  m )  e.  NN ) )
17 equequ2 1736 . . . . . . . . 9  |-  ( n  =  r  ->  (
m  =  n  <->  m  =  r ) )
1817orbi2d 792 . . . . . . . 8  |-  ( n  =  r  ->  (
( m  =  1  \/  m  =  n )  <->  ( m  =  1  \/  m  =  r ) ) )
1916, 18imbi12d 234 . . . . . . 7  |-  ( n  =  r  ->  (
( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
2019ralbidv 2506 . . . . . 6  |-  ( n  =  r  ->  ( A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
2114, 20anbi12d 473 . . . . 5  |-  ( n  =  r  ->  (
( 1  <  n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) )  <->  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
22 infpn2.1 . . . . 5  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
2321, 22elrab2 2932 . . . 4  |-  ( r  e.  S  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
2412, 13, 233bitr4i 212 . . 3  |-  ( r  e.  Prime  <->  r  e.  S
)
2524eqriv 2202 . 2  |-  Prime  =  S
26 prminf 12826 . 2  |-  Prime  ~~  NN
2725, 26eqbrtrri 4067 1  |-  S  ~~  NN
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488   class class class wbr 4044   ` cfv 5271  (class class class)co 5944    ~~ cen 6825   1c1 7926    < clt 8107    / cdiv 8745   NNcn 9036   2c2 9087   ZZ>=cuz 9648    || cdvds 12098   Primecprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-dju 7140  df-inl 7149  df-inr 7150  df-case 7186  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-prm 12430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator