ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpn2 Unicode version

Theorem infpn2 12400
Description: There exist infinitely many prime numbers: the set of all primes  S is unbounded by infpn 12302, so by unbendc 12398 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
Assertion
Ref Expression
infpn2  |-  S  ~~  NN
Distinct variable group:    m, n
Allowed substitution hints:    S( m, n)

Proof of Theorem infpn2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9514 . . . . . . 7  |-  ( r  e.  ( ZZ>= `  2
)  ->  r  e.  NN )
21adantr 274 . . . . . 6  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
3 simpll 524 . . . . . 6  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
4 eluz2b2 9551 . . . . . . . 8  |-  ( r  e.  ( ZZ>= `  2
)  <->  ( r  e.  NN  /\  1  < 
r ) )
54a1i 9 . . . . . . 7  |-  ( r  e.  NN  ->  (
r  e.  ( ZZ>= ` 
2 )  <->  ( r  e.  NN  /\  1  < 
r ) ) )
6 nndivdvds 11747 . . . . . . . . 9  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( m  ||  r  <->  ( r  /  m )  e.  NN ) )
76imbi1d 230 . . . . . . . 8  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( ( m  ||  r  ->  ( m  =  1  \/  m  =  r ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
87ralbidva 2466 . . . . . . 7  |-  ( r  e.  NN  ->  ( A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
95, 8anbi12d 470 . . . . . 6  |-  ( r  e.  NN  ->  (
( r  e.  (
ZZ>= `  2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
102, 3, 9pm5.21nii 699 . . . . 5  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
11 anass 399 . . . . 5  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
1210, 11bitri 183 . . . 4  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
13 isprm2 12060 . . . 4  |-  ( r  e.  Prime  <->  ( r  e.  ( ZZ>= `  2 )  /\  A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) ) ) )
14 breq2 3991 . . . . . 6  |-  ( n  =  r  ->  (
1  <  n  <->  1  <  r ) )
15 oveq1 5858 . . . . . . . . 9  |-  ( n  =  r  ->  (
n  /  m )  =  ( r  /  m ) )
1615eleq1d 2239 . . . . . . . 8  |-  ( n  =  r  ->  (
( n  /  m
)  e.  NN  <->  ( r  /  m )  e.  NN ) )
17 equequ2 1706 . . . . . . . . 9  |-  ( n  =  r  ->  (
m  =  n  <->  m  =  r ) )
1817orbi2d 785 . . . . . . . 8  |-  ( n  =  r  ->  (
( m  =  1  \/  m  =  n )  <->  ( m  =  1  \/  m  =  r ) ) )
1916, 18imbi12d 233 . . . . . . 7  |-  ( n  =  r  ->  (
( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
2019ralbidv 2470 . . . . . 6  |-  ( n  =  r  ->  ( A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
2114, 20anbi12d 470 . . . . 5  |-  ( n  =  r  ->  (
( 1  <  n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) )  <->  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
22 infpn2.1 . . . . 5  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
2321, 22elrab2 2889 . . . 4  |-  ( r  e.  S  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
2412, 13, 233bitr4i 211 . . 3  |-  ( r  e.  Prime  <->  r  e.  S
)
2524eqriv 2167 . 2  |-  Prime  =  S
26 prminf 12399 . 2  |-  Prime  ~~  NN
2725, 26eqbrtrri 4010 1  |-  S  ~~  NN
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   class class class wbr 3987   ` cfv 5196  (class class class)co 5851    ~~ cen 6713   1c1 7764    < clt 7943    / cdiv 8578   NNcn 8867   2c2 8918   ZZ>=cuz 9476    || cdvds 11738   Primecprime 12050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6510  df-pm 6626  df-en 6716  df-dom 6717  df-fin 6718  df-sup 6958  df-inf 6959  df-dju 7012  df-inl 7021  df-inr 7022  df-case 7058  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-fz 9955  df-fzo 10088  df-fl 10215  df-mod 10268  df-seqfrec 10391  df-exp 10465  df-fac 10649  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-dvds 11739  df-prm 12051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator