ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpn2 Unicode version

Theorem infpn2 12411
Description: There exist infinitely many prime numbers: the set of all primes  S is unbounded by infpn 12313, so by unbendc 12409 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
Assertion
Ref Expression
infpn2  |-  S  ~~  NN
Distinct variable group:    m, n
Allowed substitution hints:    S( m, n)

Proof of Theorem infpn2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9525 . . . . . . 7  |-  ( r  e.  ( ZZ>= `  2
)  ->  r  e.  NN )
21adantr 274 . . . . . 6  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
3 simpll 524 . . . . . 6  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  ->  r  e.  NN )
4 eluz2b2 9562 . . . . . . . 8  |-  ( r  e.  ( ZZ>= `  2
)  <->  ( r  e.  NN  /\  1  < 
r ) )
54a1i 9 . . . . . . 7  |-  ( r  e.  NN  ->  (
r  e.  ( ZZ>= ` 
2 )  <->  ( r  e.  NN  /\  1  < 
r ) ) )
6 nndivdvds 11758 . . . . . . . . 9  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( m  ||  r  <->  ( r  /  m )  e.  NN ) )
76imbi1d 230 . . . . . . . 8  |-  ( ( r  e.  NN  /\  m  e.  NN )  ->  ( ( m  ||  r  ->  ( m  =  1  \/  m  =  r ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
87ralbidva 2466 . . . . . . 7  |-  ( r  e.  NN  ->  ( A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
95, 8anbi12d 470 . . . . . 6  |-  ( r  e.  NN  ->  (
( r  e.  (
ZZ>= `  2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
102, 3, 9pm5.21nii 699 . . . . 5  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( (
r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
11 anass 399 . . . . 5  |-  ( ( ( r  e.  NN  /\  1  <  r )  /\  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
1210, 11bitri 183 . . . 4  |-  ( ( r  e.  ( ZZ>= ` 
2 )  /\  A. m  e.  NN  (
m  ||  r  ->  ( m  =  1  \/  m  =  r ) ) )  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
13 isprm2 12071 . . . 4  |-  ( r  e.  Prime  <->  ( r  e.  ( ZZ>= `  2 )  /\  A. m  e.  NN  ( m  ||  r  -> 
( m  =  1  \/  m  =  r ) ) ) )
14 breq2 3993 . . . . . 6  |-  ( n  =  r  ->  (
1  <  n  <->  1  <  r ) )
15 oveq1 5860 . . . . . . . . 9  |-  ( n  =  r  ->  (
n  /  m )  =  ( r  /  m ) )
1615eleq1d 2239 . . . . . . . 8  |-  ( n  =  r  ->  (
( n  /  m
)  e.  NN  <->  ( r  /  m )  e.  NN ) )
17 equequ2 1706 . . . . . . . . 9  |-  ( n  =  r  ->  (
m  =  n  <->  m  =  r ) )
1817orbi2d 785 . . . . . . . 8  |-  ( n  =  r  ->  (
( m  =  1  \/  m  =  n )  <->  ( m  =  1  \/  m  =  r ) ) )
1916, 18imbi12d 233 . . . . . . 7  |-  ( n  =  r  ->  (
( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  ( (
r  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  r ) ) ) )
2019ralbidv 2470 . . . . . 6  |-  ( n  =  r  ->  ( A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  A. m  e.  NN  ( ( r  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) )
2114, 20anbi12d 470 . . . . 5  |-  ( n  =  r  ->  (
( 1  <  n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) )  <->  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
22 infpn2.1 . . . . 5  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
2321, 22elrab2 2889 . . . 4  |-  ( r  e.  S  <->  ( r  e.  NN  /\  ( 1  <  r  /\  A. m  e.  NN  (
( r  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  r ) ) ) ) )
2412, 13, 233bitr4i 211 . . 3  |-  ( r  e.  Prime  <->  r  e.  S
)
2524eqriv 2167 . 2  |-  Prime  =  S
26 prminf 12410 . 2  |-  Prime  ~~  NN
2725, 26eqbrtrri 4012 1  |-  S  ~~  NN
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   class class class wbr 3989   ` cfv 5198  (class class class)co 5853    ~~ cen 6716   1c1 7775    < clt 7954    / cdiv 8589   NNcn 8878   2c2 8929   ZZ>=cuz 9487    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-prm 12062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator