ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 Unicode version

Theorem dju1p1e2 7264
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2  |-  ( 1o 1o )  ~~  2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 7133 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  =  ( 1o 1o )
2 djuin 7130 . . 3  |-  ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)
3 djulf1o 7124 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
4 f1of1 5503 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
53, 4ax-mp 5 . . . . . . 7  |- inl : _V -1-1-> ( { (/) }  X.  _V )
6 ssv 3205 . . . . . . 7  |-  1o  C_  _V
7 f1ores 5519 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  1o  C_  _V )  ->  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o ) )
85, 6, 7mp2an 426 . . . . . 6  |-  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )
9 1oex 6482 . . . . . . 7  |-  1o  e.  _V
109f1oen 6818 . . . . . 6  |-  ( (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )  ->  1o  ~~  (inl " 1o ) )
118, 10ax-mp 5 . . . . 5  |-  1o  ~~  (inl " 1o )
1211ensymi 6841 . . . 4  |-  (inl " 1o )  ~~  1o
13 djurf1o 7125 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
14 f1of1 5503 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1513, 14ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
16 f1ores 5519 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  1o  C_  _V )  ->  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o ) )
1715, 6, 16mp2an 426 . . . . . 6  |-  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )
189f1oen 6818 . . . . . 6  |-  ( (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )  ->  1o  ~~  (inr " 1o ) )
1917, 18ax-mp 5 . . . . 5  |-  1o  ~~  (inr " 1o )
2019ensymi 6841 . . . 4  |-  (inr " 1o )  ~~  1o
21 pm54.43 7257 . . . 4  |-  ( ( (inl " 1o ) 
~~  1o  /\  (inr " 1o )  ~~  1o )  ->  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/) 
<->  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o ) )
2212, 20, 21mp2an 426 . . 3  |-  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)  <->  (
(inl " 1o )  u.  (inr " 1o ) )  ~~  2o )
232, 22mpbi 145 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o
241, 23eqbrtrri 4056 1  |-  ( 1o 1o )  ~~  2o
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   _Vcvv 2763    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   {csn 3622   class class class wbr 4033    X. cxp 4661    |` cres 4665   "cima 4666   -1-1->wf1 5255   -1-1-onto->wf1o 5257   1oc1o 6467   2oc2o 6468    ~~ cen 6797   ⊔ cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270
  Copyright terms: Public domain W3C validator