ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 Unicode version

Theorem dju1p1e2 7336
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2  |-  ( 1o 1o )  ~~  2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 7195 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  =  ( 1o 1o )
2 djuin 7192 . . 3  |-  ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)
3 djulf1o 7186 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
4 f1of1 5543 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
53, 4ax-mp 5 . . . . . . 7  |- inl : _V -1-1-> ( { (/) }  X.  _V )
6 ssv 3223 . . . . . . 7  |-  1o  C_  _V
7 f1ores 5559 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  1o  C_  _V )  ->  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o ) )
85, 6, 7mp2an 426 . . . . . 6  |-  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )
9 1oex 6533 . . . . . . 7  |-  1o  e.  _V
109f1oen 6873 . . . . . 6  |-  ( (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )  ->  1o  ~~  (inl " 1o ) )
118, 10ax-mp 5 . . . . 5  |-  1o  ~~  (inl " 1o )
1211ensymi 6897 . . . 4  |-  (inl " 1o )  ~~  1o
13 djurf1o 7187 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
14 f1of1 5543 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1513, 14ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
16 f1ores 5559 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  1o  C_  _V )  ->  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o ) )
1715, 6, 16mp2an 426 . . . . . 6  |-  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )
189f1oen 6873 . . . . . 6  |-  ( (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )  ->  1o  ~~  (inr " 1o ) )
1917, 18ax-mp 5 . . . . 5  |-  1o  ~~  (inr " 1o )
2019ensymi 6897 . . . 4  |-  (inr " 1o )  ~~  1o
21 pm54.43 7324 . . . 4  |-  ( ( (inl " 1o ) 
~~  1o  /\  (inr " 1o )  ~~  1o )  ->  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/) 
<->  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o ) )
2212, 20, 21mp2an 426 . . 3  |-  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)  <->  (
(inl " 1o )  u.  (inr " 1o ) )  ~~  2o )
232, 22mpbi 145 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o
241, 23eqbrtrri 4082 1  |-  ( 1o 1o )  ~~  2o
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   _Vcvv 2776    u. cun 3172    i^i cin 3173    C_ wss 3174   (/)c0 3468   {csn 3643   class class class wbr 4059    X. cxp 4691    |` cres 4695   "cima 4696   -1-1->wf1 5287   -1-1-onto->wf1o 5289   1oc1o 6518   2oc2o 6519    ~~ cen 6848   ⊔ cdju 7165  inlcinl 7173  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  exmidfodomrlemr  7341  exmidfodomrlemrALT  7342
  Copyright terms: Public domain W3C validator