ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 Unicode version

Theorem dju1p1e2 7199
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2  |-  ( 1o 1o )  ~~  2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 7069 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  =  ( 1o 1o )
2 djuin 7066 . . 3  |-  ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)
3 djulf1o 7060 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
4 f1of1 5462 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
53, 4ax-mp 5 . . . . . . 7  |- inl : _V -1-1-> ( { (/) }  X.  _V )
6 ssv 3179 . . . . . . 7  |-  1o  C_  _V
7 f1ores 5478 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  1o  C_  _V )  ->  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o ) )
85, 6, 7mp2an 426 . . . . . 6  |-  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )
9 1oex 6428 . . . . . . 7  |-  1o  e.  _V
109f1oen 6762 . . . . . 6  |-  ( (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )  ->  1o  ~~  (inl " 1o ) )
118, 10ax-mp 5 . . . . 5  |-  1o  ~~  (inl " 1o )
1211ensymi 6785 . . . 4  |-  (inl " 1o )  ~~  1o
13 djurf1o 7061 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
14 f1of1 5462 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1513, 14ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
16 f1ores 5478 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  1o  C_  _V )  ->  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o ) )
1715, 6, 16mp2an 426 . . . . . 6  |-  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )
189f1oen 6762 . . . . . 6  |-  ( (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )  ->  1o  ~~  (inr " 1o ) )
1917, 18ax-mp 5 . . . . 5  |-  1o  ~~  (inr " 1o )
2019ensymi 6785 . . . 4  |-  (inr " 1o )  ~~  1o
21 pm54.43 7192 . . . 4  |-  ( ( (inl " 1o ) 
~~  1o  /\  (inr " 1o )  ~~  1o )  ->  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/) 
<->  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o ) )
2212, 20, 21mp2an 426 . . 3  |-  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)  <->  (
(inl " 1o )  u.  (inr " 1o ) )  ~~  2o )
232, 22mpbi 145 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o
241, 23eqbrtrri 4028 1  |-  ( 1o 1o )  ~~  2o
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   _Vcvv 2739    u. cun 3129    i^i cin 3130    C_ wss 3131   (/)c0 3424   {csn 3594   class class class wbr 4005    X. cxp 4626    |` cres 4630   "cima 4631   -1-1->wf1 5215   -1-1-onto->wf1o 5217   1oc1o 6413   2oc2o 6414    ~~ cen 6741   ⊔ cdju 7039  inlcinl 7047  inrcinr 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6144  df-2nd 6145  df-1o 6420  df-2o 6421  df-er 6538  df-en 6744  df-dju 7040  df-inl 7049  df-inr 7050
This theorem is referenced by:  exmidfodomrlemr  7204  exmidfodomrlemrALT  7205
  Copyright terms: Public domain W3C validator