ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1p1e2 Unicode version

Theorem dju1p1e2 7257
Description: Disjoint union version of one plus one equals two. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
dju1p1e2  |-  ( 1o 1o )  ~~  2o

Proof of Theorem dju1p1e2
StepHypRef Expression
1 djuun 7126 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  =  ( 1o 1o )
2 djuin 7123 . . 3  |-  ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)
3 djulf1o 7117 . . . . . . . 8  |- inl : _V -1-1-onto-> ( { (/) }  X.  _V )
4 f1of1 5499 . . . . . . . 8  |-  (inl : _V
-1-1-onto-> ( { (/) }  X.  _V )  -> inl : _V -1-1-> ( {
(/) }  X.  _V )
)
53, 4ax-mp 5 . . . . . . 7  |- inl : _V -1-1-> ( { (/) }  X.  _V )
6 ssv 3201 . . . . . . 7  |-  1o  C_  _V
7 f1ores 5515 . . . . . . 7  |-  ( (inl : _V -1-1-> ( {
(/) }  X.  _V )  /\  1o  C_  _V )  ->  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o ) )
85, 6, 7mp2an 426 . . . . . 6  |-  (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )
9 1oex 6477 . . . . . . 7  |-  1o  e.  _V
109f1oen 6813 . . . . . 6  |-  ( (inl  |`  1o ) : 1o -1-1-onto-> (inl " 1o )  ->  1o  ~~  (inl " 1o ) )
118, 10ax-mp 5 . . . . 5  |-  1o  ~~  (inl " 1o )
1211ensymi 6836 . . . 4  |-  (inl " 1o )  ~~  1o
13 djurf1o 7118 . . . . . . . 8  |- inr : _V -1-1-onto-> ( { 1o }  X.  _V )
14 f1of1 5499 . . . . . . . 8  |-  (inr : _V
-1-1-onto-> ( { 1o }  X.  _V )  -> inr : _V -1-1-> ( { 1o }  X.  _V ) )
1513, 14ax-mp 5 . . . . . . 7  |- inr : _V -1-1-> ( { 1o }  X.  _V )
16 f1ores 5515 . . . . . . 7  |-  ( (inr : _V -1-1-> ( { 1o }  X.  _V )  /\  1o  C_  _V )  ->  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o ) )
1715, 6, 16mp2an 426 . . . . . 6  |-  (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )
189f1oen 6813 . . . . . 6  |-  ( (inr  |`  1o ) : 1o -1-1-onto-> (inr " 1o )  ->  1o  ~~  (inr " 1o ) )
1917, 18ax-mp 5 . . . . 5  |-  1o  ~~  (inr " 1o )
2019ensymi 6836 . . . 4  |-  (inr " 1o )  ~~  1o
21 pm54.43 7250 . . . 4  |-  ( ( (inl " 1o ) 
~~  1o  /\  (inr " 1o )  ~~  1o )  ->  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/) 
<->  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o ) )
2212, 20, 21mp2an 426 . . 3  |-  ( ( (inl " 1o )  i^i  (inr " 1o ) )  =  (/)  <->  (
(inl " 1o )  u.  (inr " 1o ) )  ~~  2o )
232, 22mpbi 145 . 2  |-  ( (inl " 1o )  u.  (inr " 1o ) )  ~~  2o
241, 23eqbrtrri 4052 1  |-  ( 1o 1o )  ~~  2o
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   _Vcvv 2760    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3446   {csn 3618   class class class wbr 4029    X. cxp 4657    |` cres 4661   "cima 4662   -1-1->wf1 5251   -1-1-onto->wf1o 5253   1oc1o 6462   2oc2o 6463    ~~ cen 6792   ⊔ cdju 7096  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  exmidfodomrlemr  7262  exmidfodomrlemrALT  7263
  Copyright terms: Public domain W3C validator