ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq00topi Unicode version

Theorem coseq00topi 15340
Description: Location of the zeroes of cosine in  ( 0 [,] pi ). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq00topi  |-  ( A  e.  ( 0 [,] pi )  ->  (
( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )

Proof of Theorem coseq00topi
StepHypRef Expression
1 0re 8074 . . . . 5  |-  0  e.  RR
2 pire 15291 . . . . 5  |-  pi  e.  RR
31, 2elicc2i 10063 . . . 4  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
43simp1bi 1015 . . 3  |-  ( A  e.  ( 0 [,] pi )  ->  A  e.  RR )
5 neghalfpire 15298 . . . . 5  |-  -u (
pi  /  2 )  e.  RR
65a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  e.  RR )
71a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  0  e.  RR )
8 pirp 15294 . . . . . . . 8  |-  pi  e.  RR+
9 rphalfcl 9805 . . . . . . . 8  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  e.  RR+ )
108, 9ax-mp 5 . . . . . . 7  |-  ( pi 
/  2 )  e.  RR+
11 rpgt0 9789 . . . . . . 7  |-  ( ( pi  /  2 )  e.  RR+  ->  0  < 
( pi  /  2
) )
1210, 11ax-mp 5 . . . . . 6  |-  0  <  ( pi  /  2
)
13 halfpire 15297 . . . . . . 7  |-  ( pi 
/  2 )  e.  RR
14 lt0neg2 8544 . . . . . . 7  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <  0 ) )
1513, 14ax-mp 5 . . . . . 6  |-  ( 0  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  0 )
1612, 15mpbi 145 . . . . 5  |-  -u (
pi  /  2 )  <  0
1716a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  <  0 )
183simp2bi 1016 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  0  <_  A )
196, 7, 4, 17, 18ltletrd 8498 . . 3  |-  ( A  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  <  A )
202a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  pi  e.  RR )
21 3re 9112 . . . . . 6  |-  3  e.  RR
2221, 13remulcli 8088 . . . . 5  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
2322a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  (
3  x.  ( pi 
/  2 ) )  e.  RR )
243simp3bi 1017 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  A  <_  pi )
25 2div2e1 9171 . . . . . . . 8  |-  ( 2  /  2 )  =  1
26 2lt3 9209 . . . . . . . . 9  |-  2  <  3
27 2re 9108 . . . . . . . . . 10  |-  2  e.  RR
28 2pos 9129 . . . . . . . . . 10  |-  0  <  2
2927, 21, 27, 28ltdiv1ii 9004 . . . . . . . . 9  |-  ( 2  <  3  <->  ( 2  /  2 )  < 
( 3  /  2
) )
3026, 29mpbi 145 . . . . . . . 8  |-  ( 2  /  2 )  < 
( 3  /  2
)
3125, 30eqbrtrri 4068 . . . . . . 7  |-  1  <  ( 3  /  2
)
3221rehalfcli 9288 . . . . . . . 8  |-  ( 3  /  2 )  e.  RR
33 pipos 15293 . . . . . . . 8  |-  0  <  pi
34 ltmulgt12 8940 . . . . . . . 8  |-  ( ( pi  e.  RR  /\  ( 3  /  2
)  e.  RR  /\  0  <  pi )  -> 
( 1  <  (
3  /  2 )  <-> 
pi  <  ( (
3  /  2 )  x.  pi ) ) )
352, 32, 33, 34mp3an 1350 . . . . . . 7  |-  ( 1  <  ( 3  / 
2 )  <->  pi  <  ( ( 3  /  2
)  x.  pi ) )
3631, 35mpbi 145 . . . . . 6  |-  pi  <  ( ( 3  /  2
)  x.  pi )
3721recni 8086 . . . . . . 7  |-  3  e.  CC
38 2cn 9109 . . . . . . . 8  |-  2  e.  CC
39 2ap0 9131 . . . . . . . 8  |-  2 #  0
4038, 39pm3.2i 272 . . . . . . 7  |-  ( 2  e.  CC  /\  2 #  0 )
412recni 8086 . . . . . . 7  |-  pi  e.  CC
42 div32ap 8767 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 )  /\  pi  e.  CC )  -> 
( ( 3  / 
2 )  x.  pi )  =  ( 3  x.  ( pi  / 
2 ) ) )
4337, 40, 41, 42mp3an 1350 . . . . . 6  |-  ( ( 3  /  2 )  x.  pi )  =  ( 3  x.  (
pi  /  2 ) )
4436, 43breqtri 4070 . . . . 5  |-  pi  <  ( 3  x.  ( pi 
/  2 ) )
4544a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  pi  <  ( 3  x.  (
pi  /  2 ) ) )
464, 20, 23, 24, 45lelttrd 8199 . . 3  |-  ( A  e.  ( 0 [,] pi )  ->  A  <  ( 3  x.  (
pi  /  2 ) ) )
47 neghalfpirx 15299 . . . 4  |-  -u (
pi  /  2 )  e.  RR*
4822rexri 8132 . . . 4  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
49 elioo2 10045 . . . 4  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
5047, 48, 49mp2an 426 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
514, 19, 46, 50syl3anbrc 1184 . 2  |-  ( A  e.  ( 0 [,] pi )  ->  A  e.  ( -u ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) ) )
52 coseq0q4123 15339 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
5351, 52syl 14 1  |-  ( A  e.  ( 0 [,] pi )  ->  (
( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    x. cmul 7932   RR*cxr 8108    < clt 8109    <_ cle 8110   -ucneg 8246   # cap 8656    / cdiv 8747   2c2 9089   3c3 9090   RR+crp 9777   (,)cioo 10012   [,]cicc 10015   cosccos 11989   picpi 11991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-pre-suploc 8048  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-map 6739  df-pm 6740  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-ioc 10017  df-ico 10018  df-icc 10019  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-shft 11159  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-sin 11994  df-cos 11995  df-pi 11997  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-cncf 15076  df-limced 15161  df-dvap 15162
This theorem is referenced by:  coseq0negpitopi  15341
  Copyright terms: Public domain W3C validator