ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coseq00topi Unicode version

Theorem coseq00topi 14639
Description: Location of the zeroes of cosine in  ( 0 [,] pi ). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq00topi  |-  ( A  e.  ( 0 [,] pi )  ->  (
( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )

Proof of Theorem coseq00topi
StepHypRef Expression
1 0re 7974 . . . . 5  |-  0  e.  RR
2 pire 14590 . . . . 5  |-  pi  e.  RR
31, 2elicc2i 9956 . . . 4  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
43simp1bi 1013 . . 3  |-  ( A  e.  ( 0 [,] pi )  ->  A  e.  RR )
5 neghalfpire 14597 . . . . 5  |-  -u (
pi  /  2 )  e.  RR
65a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  e.  RR )
71a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  0  e.  RR )
8 pirp 14593 . . . . . . . 8  |-  pi  e.  RR+
9 rphalfcl 9698 . . . . . . . 8  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  e.  RR+ )
108, 9ax-mp 5 . . . . . . 7  |-  ( pi 
/  2 )  e.  RR+
11 rpgt0 9682 . . . . . . 7  |-  ( ( pi  /  2 )  e.  RR+  ->  0  < 
( pi  /  2
) )
1210, 11ax-mp 5 . . . . . 6  |-  0  <  ( pi  /  2
)
13 halfpire 14596 . . . . . . 7  |-  ( pi 
/  2 )  e.  RR
14 lt0neg2 8443 . . . . . . 7  |-  ( ( pi  /  2 )  e.  RR  ->  (
0  <  ( pi  /  2 )  <->  -u ( pi 
/  2 )  <  0 ) )
1513, 14ax-mp 5 . . . . . 6  |-  ( 0  <  ( pi  / 
2 )  <->  -u ( pi 
/  2 )  <  0 )
1612, 15mpbi 145 . . . . 5  |-  -u (
pi  /  2 )  <  0
1716a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  <  0 )
183simp2bi 1014 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  0  <_  A )
196, 7, 4, 17, 18ltletrd 8397 . . 3  |-  ( A  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  <  A )
202a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  pi  e.  RR )
21 3re 9010 . . . . . 6  |-  3  e.  RR
2221, 13remulcli 7988 . . . . 5  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
2322a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  (
3  x.  ( pi 
/  2 ) )  e.  RR )
243simp3bi 1015 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  A  <_  pi )
25 2div2e1 9068 . . . . . . . 8  |-  ( 2  /  2 )  =  1
26 2lt3 9106 . . . . . . . . 9  |-  2  <  3
27 2re 9006 . . . . . . . . . 10  |-  2  e.  RR
28 2pos 9027 . . . . . . . . . 10  |-  0  <  2
2927, 21, 27, 28ltdiv1ii 8903 . . . . . . . . 9  |-  ( 2  <  3  <->  ( 2  /  2 )  < 
( 3  /  2
) )
3026, 29mpbi 145 . . . . . . . 8  |-  ( 2  /  2 )  < 
( 3  /  2
)
3125, 30eqbrtrri 4040 . . . . . . 7  |-  1  <  ( 3  /  2
)
3221rehalfcli 9184 . . . . . . . 8  |-  ( 3  /  2 )  e.  RR
33 pipos 14592 . . . . . . . 8  |-  0  <  pi
34 ltmulgt12 8839 . . . . . . . 8  |-  ( ( pi  e.  RR  /\  ( 3  /  2
)  e.  RR  /\  0  <  pi )  -> 
( 1  <  (
3  /  2 )  <-> 
pi  <  ( (
3  /  2 )  x.  pi ) ) )
352, 32, 33, 34mp3an 1347 . . . . . . 7  |-  ( 1  <  ( 3  / 
2 )  <->  pi  <  ( ( 3  /  2
)  x.  pi ) )
3631, 35mpbi 145 . . . . . 6  |-  pi  <  ( ( 3  /  2
)  x.  pi )
3721recni 7986 . . . . . . 7  |-  3  e.  CC
38 2cn 9007 . . . . . . . 8  |-  2  e.  CC
39 2ap0 9029 . . . . . . . 8  |-  2 #  0
4038, 39pm3.2i 272 . . . . . . 7  |-  ( 2  e.  CC  /\  2 #  0 )
412recni 7986 . . . . . . 7  |-  pi  e.  CC
42 div32ap 8666 . . . . . . 7  |-  ( ( 3  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 )  /\  pi  e.  CC )  -> 
( ( 3  / 
2 )  x.  pi )  =  ( 3  x.  ( pi  / 
2 ) ) )
4337, 40, 41, 42mp3an 1347 . . . . . 6  |-  ( ( 3  /  2 )  x.  pi )  =  ( 3  x.  (
pi  /  2 ) )
4436, 43breqtri 4042 . . . . 5  |-  pi  <  ( 3  x.  ( pi 
/  2 ) )
4544a1i 9 . . . 4  |-  ( A  e.  ( 0 [,] pi )  ->  pi  <  ( 3  x.  (
pi  /  2 ) ) )
464, 20, 23, 24, 45lelttrd 8099 . . 3  |-  ( A  e.  ( 0 [,] pi )  ->  A  <  ( 3  x.  (
pi  /  2 ) ) )
47 neghalfpirx 14598 . . . 4  |-  -u (
pi  /  2 )  e.  RR*
4822rexri 8032 . . . 4  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
49 elioo2 9938 . . . 4  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR* )  ->  ( A  e.  (
-u ( pi  / 
2 ) (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) ) )
5047, 48, 49mp2an 426 . . 3  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  -u (
pi  /  2 )  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) ) )
514, 19, 46, 50syl3anbrc 1182 . 2  |-  ( A  e.  ( 0 [,] pi )  ->  A  e.  ( -u ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) ) )
52 coseq0q4123 14638 . 2  |-  ( A  e.  ( -u (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  -> 
( ( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
5351, 52syl 14 1  |-  ( A  e.  ( 0 [,] pi )  ->  (
( cos `  A
)  =  0  <->  A  =  ( pi  / 
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2159   class class class wbr 4017   ` cfv 5230  (class class class)co 5890   CCcc 7826   RRcr 7827   0cc0 7828   1c1 7829    x. cmul 7833   RR*cxr 8008    < clt 8009    <_ cle 8010   -ucneg 8146   # cap 8555    / cdiv 8646   2c2 8987   3c3 8988   RR+crp 9670   (,)cioo 9905   [,]cicc 9908   cosccos 11670   picpi 11672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944  ax-pre-mulgt0 7945  ax-pre-mulext 7946  ax-arch 7947  ax-caucvg 7948  ax-pre-suploc 7949  ax-addf 7950  ax-mulf 7951
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-disj 3995  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-isom 5239  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-of 6100  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-frec 6409  df-1o 6434  df-oadd 6438  df-er 6552  df-map 6667  df-pm 6668  df-en 6758  df-dom 6759  df-fin 6760  df-sup 7000  df-inf 7001  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-reap 8549  df-ap 8556  df-div 8647  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-7 9000  df-8 9001  df-9 9002  df-n0 9194  df-z 9271  df-uz 9546  df-q 9637  df-rp 9671  df-xneg 9789  df-xadd 9790  df-ioo 9909  df-ioc 9910  df-ico 9911  df-icc 9912  df-fz 10026  df-fzo 10160  df-seqfrec 10463  df-exp 10537  df-fac 10723  df-bc 10745  df-ihash 10773  df-shft 10841  df-cj 10868  df-re 10869  df-im 10870  df-rsqrt 11024  df-abs 11025  df-clim 11304  df-sumdc 11379  df-ef 11673  df-sin 11675  df-cos 11676  df-pi 11678  df-rest 12711  df-topgen 12730  df-psmet 13816  df-xmet 13817  df-met 13818  df-bl 13819  df-mopn 13820  df-top 13881  df-topon 13894  df-bases 13926  df-ntr 13979  df-cn 14071  df-cnp 14072  df-tx 14136  df-cncf 14441  df-limced 14508  df-dvap 14509
This theorem is referenced by:  coseq0negpitopi  14640
  Copyright terms: Public domain W3C validator