| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsuptid | GIF version | ||
| Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
| eqsuptid.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| eqsuptid.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
| eqsuptid.4 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
| Ref | Expression |
|---|---|
| eqsuptid | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsuptid.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 2 | eqsuptid.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
| 3 | 2 | ralrimiva 2578 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦) |
| 4 | eqsuptid.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) | |
| 5 | 4 | expr 375 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 6 | 5 | ralrimiva 2578 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 7 | supmoti.ti | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
| 8 | 7 | eqsupti 7080 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) |
| 9 | 1, 3, 6, 8 | mp3and 1352 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 class class class wbr 4043 supcsup 7066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-riota 5889 df-sup 7068 |
| This theorem is referenced by: supmaxti 7088 supisoti 7094 xrmaxaddlem 11490 dfgcd2 12254 |
| Copyright terms: Public domain | W3C validator |