ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsuptid GIF version

Theorem eqsuptid 7120
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
eqsuptid.2 (𝜑𝐶𝐴)
eqsuptid.3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
eqsuptid.4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
Assertion
Ref Expression
eqsuptid (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦,𝑧   𝑦,𝐵,𝑧   𝑢,𝑅,𝑣,𝑦,𝑧   𝜑,𝑢,𝑣,𝑦   𝑦,𝐶,𝑢,𝑣   𝑢,𝐵,𝑣,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑧)

Proof of Theorem eqsuptid
StepHypRef Expression
1 eqsuptid.2 . 2 (𝜑𝐶𝐴)
2 eqsuptid.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
32ralrimiva 2580 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝐶𝑅𝑦)
4 eqsuptid.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
54expr 375 . . 3 ((𝜑𝑦𝐴) → (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
65ralrimiva 2580 . 2 (𝜑 → ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
7 supmoti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
87eqsupti 7119 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1353 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486   class class class wbr 4054  supcsup 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-iota 5246  df-riota 5917  df-sup 7107
This theorem is referenced by:  supmaxti  7127  supisoti  7133  xrmaxaddlem  11656  dfgcd2  12420
  Copyright terms: Public domain W3C validator