ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlpoim Unicode version

Theorem nninfwlpoim 7253
Description: Decidable equality for ℕ implies the Weak Limited Principle of Omniscience (WLPO). (Contributed by Jim Kingdon, 9-Dec-2024.)
Assertion
Ref Expression
nninfwlpoim  |-  ( A. x  e.  A. y  e. DECID  x  =  y  ->  om  e. WOmni )
Distinct variable group:    x, y

Proof of Theorem nninfwlpoim
Dummy variables  f  i  j  n  q  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6738 . . . . 5  |-  ( f  e.  ( 2o  ^m  om )  ->  f : om
--> 2o )
21adantl 277 . . . 4  |-  ( ( A. x  e.  A. y  e. DECID  x  =  y  /\  f  e.  ( 2o  ^m  om ) )  ->  f : om --> 2o )
3 fveqeq2 5570 . . . . . . . 8  |-  ( q  =  z  ->  (
( f `  q
)  =  (/)  <->  ( f `  z )  =  (/) ) )
43cbvrexv 2730 . . . . . . 7  |-  ( E. q  e.  suc  j
( f `  q
)  =  (/)  <->  E. z  e.  suc  j ( f `
 z )  =  (/) )
5 suceq 4438 . . . . . . . 8  |-  ( j  =  i  ->  suc  j  =  suc  i )
65rexeqdv 2700 . . . . . . 7  |-  ( j  =  i  ->  ( E. z  e.  suc  j ( f `  z )  =  (/)  <->  E. z  e.  suc  i ( f `  z )  =  (/) ) )
74, 6bitrid 192 . . . . . 6  |-  ( j  =  i  ->  ( E. q  e.  suc  j ( f `  q )  =  (/)  <->  E. z  e.  suc  i ( f `  z )  =  (/) ) )
87ifbid 3583 . . . . 5  |-  ( j  =  i  ->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o )  =  if ( E. z  e.  suc  i ( f `
 z )  =  (/) ,  (/) ,  1o ) )
98cbvmptv 4130 . . . 4  |-  ( j  e.  om  |->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o ) )  =  ( i  e. 
om  |->  if ( E. z  e.  suc  i
( f `  z
)  =  (/) ,  (/) ,  1o ) )
10 simpl 109 . . . . 5  |-  ( ( A. x  e.  A. y  e. DECID  x  =  y  /\  f  e.  ( 2o  ^m  om ) )  ->  A. x  e.  A. y  e. DECID  x  =  y )
11 equequ1 1726 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
1211dcbid 839 . . . . . 6  |-  ( x  =  z  ->  (DECID  x  =  y  <-> DECID  z  =  y )
)
13 equequ2 1727 . . . . . . 7  |-  ( y  =  w  ->  (
z  =  y  <->  z  =  w ) )
1413dcbid 839 . . . . . 6  |-  ( y  =  w  ->  (DECID  z  =  y  <-> DECID  z  =  w )
)
1512, 14cbvral2v 2742 . . . . 5  |-  ( A. x  e.  A. y  e. DECID  x  =  y  <->  A. z  e.  A. w  e. DECID  z  =  w )
1610, 15sylib 122 . . . 4  |-  ( ( A. x  e.  A. y  e. DECID  x  =  y  /\  f  e.  ( 2o  ^m  om ) )  ->  A. z  e.  A. w  e. DECID  z  =  w )
172, 9, 16nninfwlpoimlemdc 7252 . . 3  |-  ( ( A. x  e.  A. y  e. DECID  x  =  y  /\  f  e.  ( 2o  ^m  om ) )  -> DECID  A. n  e.  om  ( f `  n
)  =  1o )
1817ralrimiva 2570 . 2  |-  ( A. x  e.  A. y  e. DECID  x  =  y  ->  A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o )
19 omex 4630 . . 3  |-  om  e.  _V
20 iswomnimap 7241 . . 3  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o ) )
2119, 20ax-mp 5 . 2  |-  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o )
2218, 21sylibr 134 1  |-  ( A. x  e.  A. y  e. DECID  x  =  y  ->  om  e. WOmni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   (/)c0 3451   ifcif 3562    |-> cmpt 4095   suc csuc 4401   omcom 4627   -->wf 5255   ` cfv 5259  (class class class)co 5925   1oc1o 6476   2oc2o 6477    ^m cmap 6716  ℕxnninf 7194  WOmnicwomni 7238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-er 6601  df-map 6718  df-en 6809  df-fin 6811  df-nninf 7195  df-womni 7239
This theorem is referenced by:  nninfwlpo  7254
  Copyright terms: Public domain W3C validator