ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff13f Unicode version

Theorem dff13f 5749
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
dff13f.1  |-  F/_ x F
dff13f.2  |-  F/_ y F
Assertion
Ref Expression
dff13f  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)    F( x, y)

Proof of Theorem dff13f
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5747 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )
) )
2 dff13f.2 . . . . . . . . 9  |-  F/_ y F
3 nfcv 2312 . . . . . . . . 9  |-  F/_ y
w
42, 3nffv 5506 . . . . . . . 8  |-  F/_ y
( F `  w
)
5 nfcv 2312 . . . . . . . . 9  |-  F/_ y
v
62, 5nffv 5506 . . . . . . . 8  |-  F/_ y
( F `  v
)
74, 6nfeq 2320 . . . . . . 7  |-  F/ y ( F `  w
)  =  ( F `
 v )
8 nfv 1521 . . . . . . 7  |-  F/ y  w  =  v
97, 8nfim 1565 . . . . . 6  |-  F/ y ( ( F `  w )  =  ( F `  v )  ->  w  =  v )
10 nfv 1521 . . . . . 6  |-  F/ v ( ( F `  w )  =  ( F `  y )  ->  w  =  y )
11 fveq2 5496 . . . . . . . 8  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
1211eqeq2d 2182 . . . . . . 7  |-  ( v  =  y  ->  (
( F `  w
)  =  ( F `
 v )  <->  ( F `  w )  =  ( F `  y ) ) )
13 equequ2 1706 . . . . . . 7  |-  ( v  =  y  ->  (
w  =  v  <->  w  =  y ) )
1412, 13imbi12d 233 . . . . . 6  |-  ( v  =  y  ->  (
( ( F `  w )  =  ( F `  v )  ->  w  =  v )  <->  ( ( F `
 w )  =  ( F `  y
)  ->  w  =  y ) ) )
159, 10, 14cbvral 2692 . . . . 5  |-  ( A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. y  e.  A  ( ( F `  w
)  =  ( F `
 y )  ->  w  =  y )
)
1615ralbii 2476 . . . 4  |-  ( A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. w  e.  A  A. y  e.  A  (
( F `  w
)  =  ( F `
 y )  ->  w  =  y )
)
17 nfcv 2312 . . . . . 6  |-  F/_ x A
18 dff13f.1 . . . . . . . . 9  |-  F/_ x F
19 nfcv 2312 . . . . . . . . 9  |-  F/_ x w
2018, 19nffv 5506 . . . . . . . 8  |-  F/_ x
( F `  w
)
21 nfcv 2312 . . . . . . . . 9  |-  F/_ x
y
2218, 21nffv 5506 . . . . . . . 8  |-  F/_ x
( F `  y
)
2320, 22nfeq 2320 . . . . . . 7  |-  F/ x
( F `  w
)  =  ( F `
 y )
24 nfv 1521 . . . . . . 7  |-  F/ x  w  =  y
2523, 24nfim 1565 . . . . . 6  |-  F/ x
( ( F `  w )  =  ( F `  y )  ->  w  =  y )
2617, 25nfralxy 2508 . . . . 5  |-  F/ x A. y  e.  A  ( ( F `  w )  =  ( F `  y )  ->  w  =  y )
27 nfv 1521 . . . . 5  |-  F/ w A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )
28 fveq2 5496 . . . . . . . 8  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
2928eqeq1d 2179 . . . . . . 7  |-  ( w  =  x  ->  (
( F `  w
)  =  ( F `
 y )  <->  ( F `  x )  =  ( F `  y ) ) )
30 equequ1 1705 . . . . . . 7  |-  ( w  =  x  ->  (
w  =  y  <->  x  =  y ) )
3129, 30imbi12d 233 . . . . . 6  |-  ( w  =  x  ->  (
( ( F `  w )  =  ( F `  y )  ->  w  =  y )  <->  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
3231ralbidv 2470 . . . . 5  |-  ( w  =  x  ->  ( A. y  e.  A  ( ( F `  w )  =  ( F `  y )  ->  w  =  y )  <->  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3326, 27, 32cbvral 2692 . . . 4  |-  ( A. w  e.  A  A. y  e.  A  (
( F `  w
)  =  ( F `
 y )  ->  w  =  y )  <->  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3416, 33bitri 183 . . 3  |-  ( A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3534anbi2i 454 . 2  |-  ( ( F : A --> B  /\  A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )
)  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
361, 35bitri 183 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   F/_wnfc 2299   A.wral 2448   -->wf 5194   -1-1->wf1 5195   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fv 5206
This theorem is referenced by:  f1mpt  5750  dom2lem  6750
  Copyright terms: Public domain W3C validator