| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff13f | Unicode version | ||
| Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.) |
| Ref | Expression |
|---|---|
| dff13f.1 |
|
| dff13f.2 |
|
| Ref | Expression |
|---|---|
| dff13f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 5860 |
. 2
| |
| 2 | dff13f.2 |
. . . . . . . . 9
| |
| 3 | nfcv 2350 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nffv 5609 |
. . . . . . . 8
|
| 5 | nfcv 2350 |
. . . . . . . . 9
| |
| 6 | 2, 5 | nffv 5609 |
. . . . . . . 8
|
| 7 | 4, 6 | nfeq 2358 |
. . . . . . 7
|
| 8 | nfv 1552 |
. . . . . . 7
| |
| 9 | 7, 8 | nfim 1596 |
. . . . . 6
|
| 10 | nfv 1552 |
. . . . . 6
| |
| 11 | fveq2 5599 |
. . . . . . . 8
| |
| 12 | 11 | eqeq2d 2219 |
. . . . . . 7
|
| 13 | equequ2 1737 |
. . . . . . 7
| |
| 14 | 12, 13 | imbi12d 234 |
. . . . . 6
|
| 15 | 9, 10, 14 | cbvral 2738 |
. . . . 5
|
| 16 | 15 | ralbii 2514 |
. . . 4
|
| 17 | nfcv 2350 |
. . . . . 6
| |
| 18 | dff13f.1 |
. . . . . . . . 9
| |
| 19 | nfcv 2350 |
. . . . . . . . 9
| |
| 20 | 18, 19 | nffv 5609 |
. . . . . . . 8
|
| 21 | nfcv 2350 |
. . . . . . . . 9
| |
| 22 | 18, 21 | nffv 5609 |
. . . . . . . 8
|
| 23 | 20, 22 | nfeq 2358 |
. . . . . . 7
|
| 24 | nfv 1552 |
. . . . . . 7
| |
| 25 | 23, 24 | nfim 1596 |
. . . . . 6
|
| 26 | 17, 25 | nfralxy 2546 |
. . . . 5
|
| 27 | nfv 1552 |
. . . . 5
| |
| 28 | fveq2 5599 |
. . . . . . . 8
| |
| 29 | 28 | eqeq1d 2216 |
. . . . . . 7
|
| 30 | equequ1 1736 |
. . . . . . 7
| |
| 31 | 29, 30 | imbi12d 234 |
. . . . . 6
|
| 32 | 31 | ralbidv 2508 |
. . . . 5
|
| 33 | 26, 27, 32 | cbvral 2738 |
. . . 4
|
| 34 | 16, 33 | bitri 184 |
. . 3
|
| 35 | 34 | anbi2i 457 |
. 2
|
| 36 | 1, 35 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fv 5298 |
| This theorem is referenced by: f1mpt 5863 dom2lem 6886 |
| Copyright terms: Public domain | W3C validator |