Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff13f | Unicode version |
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
dff13f.1 | |
dff13f.2 |
Ref | Expression |
---|---|
dff13f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff13 5736 | . 2 | |
2 | dff13f.2 | . . . . . . . . 9 | |
3 | nfcv 2308 | . . . . . . . . 9 | |
4 | 2, 3 | nffv 5496 | . . . . . . . 8 |
5 | nfcv 2308 | . . . . . . . . 9 | |
6 | 2, 5 | nffv 5496 | . . . . . . . 8 |
7 | 4, 6 | nfeq 2316 | . . . . . . 7 |
8 | nfv 1516 | . . . . . . 7 | |
9 | 7, 8 | nfim 1560 | . . . . . 6 |
10 | nfv 1516 | . . . . . 6 | |
11 | fveq2 5486 | . . . . . . . 8 | |
12 | 11 | eqeq2d 2177 | . . . . . . 7 |
13 | equequ2 1701 | . . . . . . 7 | |
14 | 12, 13 | imbi12d 233 | . . . . . 6 |
15 | 9, 10, 14 | cbvral 2688 | . . . . 5 |
16 | 15 | ralbii 2472 | . . . 4 |
17 | nfcv 2308 | . . . . . 6 | |
18 | dff13f.1 | . . . . . . . . 9 | |
19 | nfcv 2308 | . . . . . . . . 9 | |
20 | 18, 19 | nffv 5496 | . . . . . . . 8 |
21 | nfcv 2308 | . . . . . . . . 9 | |
22 | 18, 21 | nffv 5496 | . . . . . . . 8 |
23 | 20, 22 | nfeq 2316 | . . . . . . 7 |
24 | nfv 1516 | . . . . . . 7 | |
25 | 23, 24 | nfim 1560 | . . . . . 6 |
26 | 17, 25 | nfralxy 2504 | . . . . 5 |
27 | nfv 1516 | . . . . 5 | |
28 | fveq2 5486 | . . . . . . . 8 | |
29 | 28 | eqeq1d 2174 | . . . . . . 7 |
30 | equequ1 1700 | . . . . . . 7 | |
31 | 29, 30 | imbi12d 233 | . . . . . 6 |
32 | 31 | ralbidv 2466 | . . . . 5 |
33 | 26, 27, 32 | cbvral 2688 | . . . 4 |
34 | 16, 33 | bitri 183 | . . 3 |
35 | 34 | anbi2i 453 | . 2 |
36 | 1, 35 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wnfc 2295 wral 2444 wf 5184 wf1 5185 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 |
This theorem is referenced by: f1mpt 5739 dom2lem 6738 |
Copyright terms: Public domain | W3C validator |