| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff13f | Unicode version | ||
| Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.) |
| Ref | Expression |
|---|---|
| dff13f.1 |
|
| dff13f.2 |
|
| Ref | Expression |
|---|---|
| dff13f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 5836 |
. 2
| |
| 2 | dff13f.2 |
. . . . . . . . 9
| |
| 3 | nfcv 2347 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nffv 5585 |
. . . . . . . 8
|
| 5 | nfcv 2347 |
. . . . . . . . 9
| |
| 6 | 2, 5 | nffv 5585 |
. . . . . . . 8
|
| 7 | 4, 6 | nfeq 2355 |
. . . . . . 7
|
| 8 | nfv 1550 |
. . . . . . 7
| |
| 9 | 7, 8 | nfim 1594 |
. . . . . 6
|
| 10 | nfv 1550 |
. . . . . 6
| |
| 11 | fveq2 5575 |
. . . . . . . 8
| |
| 12 | 11 | eqeq2d 2216 |
. . . . . . 7
|
| 13 | equequ2 1735 |
. . . . . . 7
| |
| 14 | 12, 13 | imbi12d 234 |
. . . . . 6
|
| 15 | 9, 10, 14 | cbvral 2733 |
. . . . 5
|
| 16 | 15 | ralbii 2511 |
. . . 4
|
| 17 | nfcv 2347 |
. . . . . 6
| |
| 18 | dff13f.1 |
. . . . . . . . 9
| |
| 19 | nfcv 2347 |
. . . . . . . . 9
| |
| 20 | 18, 19 | nffv 5585 |
. . . . . . . 8
|
| 21 | nfcv 2347 |
. . . . . . . . 9
| |
| 22 | 18, 21 | nffv 5585 |
. . . . . . . 8
|
| 23 | 20, 22 | nfeq 2355 |
. . . . . . 7
|
| 24 | nfv 1550 |
. . . . . . 7
| |
| 25 | 23, 24 | nfim 1594 |
. . . . . 6
|
| 26 | 17, 25 | nfralxy 2543 |
. . . . 5
|
| 27 | nfv 1550 |
. . . . 5
| |
| 28 | fveq2 5575 |
. . . . . . . 8
| |
| 29 | 28 | eqeq1d 2213 |
. . . . . . 7
|
| 30 | equequ1 1734 |
. . . . . . 7
| |
| 31 | 29, 30 | imbi12d 234 |
. . . . . 6
|
| 32 | 31 | ralbidv 2505 |
. . . . 5
|
| 33 | 26, 27, 32 | cbvral 2733 |
. . . 4
|
| 34 | 16, 33 | bitri 184 |
. . 3
|
| 35 | 34 | anbi2i 457 |
. 2
|
| 36 | 1, 35 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fv 5278 |
| This theorem is referenced by: f1mpt 5839 dom2lem 6862 |
| Copyright terms: Public domain | W3C validator |