| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff13f | Unicode version | ||
| Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.) |
| Ref | Expression |
|---|---|
| dff13f.1 |
|
| dff13f.2 |
|
| Ref | Expression |
|---|---|
| dff13f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 5815 |
. 2
| |
| 2 | dff13f.2 |
. . . . . . . . 9
| |
| 3 | nfcv 2339 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nffv 5568 |
. . . . . . . 8
|
| 5 | nfcv 2339 |
. . . . . . . . 9
| |
| 6 | 2, 5 | nffv 5568 |
. . . . . . . 8
|
| 7 | 4, 6 | nfeq 2347 |
. . . . . . 7
|
| 8 | nfv 1542 |
. . . . . . 7
| |
| 9 | 7, 8 | nfim 1586 |
. . . . . 6
|
| 10 | nfv 1542 |
. . . . . 6
| |
| 11 | fveq2 5558 |
. . . . . . . 8
| |
| 12 | 11 | eqeq2d 2208 |
. . . . . . 7
|
| 13 | equequ2 1727 |
. . . . . . 7
| |
| 14 | 12, 13 | imbi12d 234 |
. . . . . 6
|
| 15 | 9, 10, 14 | cbvral 2725 |
. . . . 5
|
| 16 | 15 | ralbii 2503 |
. . . 4
|
| 17 | nfcv 2339 |
. . . . . 6
| |
| 18 | dff13f.1 |
. . . . . . . . 9
| |
| 19 | nfcv 2339 |
. . . . . . . . 9
| |
| 20 | 18, 19 | nffv 5568 |
. . . . . . . 8
|
| 21 | nfcv 2339 |
. . . . . . . . 9
| |
| 22 | 18, 21 | nffv 5568 |
. . . . . . . 8
|
| 23 | 20, 22 | nfeq 2347 |
. . . . . . 7
|
| 24 | nfv 1542 |
. . . . . . 7
| |
| 25 | 23, 24 | nfim 1586 |
. . . . . 6
|
| 26 | 17, 25 | nfralxy 2535 |
. . . . 5
|
| 27 | nfv 1542 |
. . . . 5
| |
| 28 | fveq2 5558 |
. . . . . . . 8
| |
| 29 | 28 | eqeq1d 2205 |
. . . . . . 7
|
| 30 | equequ1 1726 |
. . . . . . 7
| |
| 31 | 29, 30 | imbi12d 234 |
. . . . . 6
|
| 32 | 31 | ralbidv 2497 |
. . . . 5
|
| 33 | 26, 27, 32 | cbvral 2725 |
. . . 4
|
| 34 | 16, 33 | bitri 184 |
. . 3
|
| 35 | 34 | anbi2i 457 |
. 2
|
| 36 | 1, 35 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fv 5266 |
| This theorem is referenced by: f1mpt 5818 dom2lem 6831 |
| Copyright terms: Public domain | W3C validator |