ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff13f Unicode version

Theorem dff13f 5792
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
dff13f.1  |-  F/_ x F
dff13f.2  |-  F/_ y F
Assertion
Ref Expression
dff13f  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)    F( x, y)

Proof of Theorem dff13f
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 5790 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )
) )
2 dff13f.2 . . . . . . . . 9  |-  F/_ y F
3 nfcv 2332 . . . . . . . . 9  |-  F/_ y
w
42, 3nffv 5544 . . . . . . . 8  |-  F/_ y
( F `  w
)
5 nfcv 2332 . . . . . . . . 9  |-  F/_ y
v
62, 5nffv 5544 . . . . . . . 8  |-  F/_ y
( F `  v
)
74, 6nfeq 2340 . . . . . . 7  |-  F/ y ( F `  w
)  =  ( F `
 v )
8 nfv 1539 . . . . . . 7  |-  F/ y  w  =  v
97, 8nfim 1583 . . . . . 6  |-  F/ y ( ( F `  w )  =  ( F `  v )  ->  w  =  v )
10 nfv 1539 . . . . . 6  |-  F/ v ( ( F `  w )  =  ( F `  y )  ->  w  =  y )
11 fveq2 5534 . . . . . . . 8  |-  ( v  =  y  ->  ( F `  v )  =  ( F `  y ) )
1211eqeq2d 2201 . . . . . . 7  |-  ( v  =  y  ->  (
( F `  w
)  =  ( F `
 v )  <->  ( F `  w )  =  ( F `  y ) ) )
13 equequ2 1724 . . . . . . 7  |-  ( v  =  y  ->  (
w  =  v  <->  w  =  y ) )
1412, 13imbi12d 234 . . . . . 6  |-  ( v  =  y  ->  (
( ( F `  w )  =  ( F `  v )  ->  w  =  v )  <->  ( ( F `
 w )  =  ( F `  y
)  ->  w  =  y ) ) )
159, 10, 14cbvral 2714 . . . . 5  |-  ( A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. y  e.  A  ( ( F `  w
)  =  ( F `
 y )  ->  w  =  y )
)
1615ralbii 2496 . . . 4  |-  ( A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. w  e.  A  A. y  e.  A  (
( F `  w
)  =  ( F `
 y )  ->  w  =  y )
)
17 nfcv 2332 . . . . . 6  |-  F/_ x A
18 dff13f.1 . . . . . . . . 9  |-  F/_ x F
19 nfcv 2332 . . . . . . . . 9  |-  F/_ x w
2018, 19nffv 5544 . . . . . . . 8  |-  F/_ x
( F `  w
)
21 nfcv 2332 . . . . . . . . 9  |-  F/_ x
y
2218, 21nffv 5544 . . . . . . . 8  |-  F/_ x
( F `  y
)
2320, 22nfeq 2340 . . . . . . 7  |-  F/ x
( F `  w
)  =  ( F `
 y )
24 nfv 1539 . . . . . . 7  |-  F/ x  w  =  y
2523, 24nfim 1583 . . . . . 6  |-  F/ x
( ( F `  w )  =  ( F `  y )  ->  w  =  y )
2617, 25nfralxy 2528 . . . . 5  |-  F/ x A. y  e.  A  ( ( F `  w )  =  ( F `  y )  ->  w  =  y )
27 nfv 1539 . . . . 5  |-  F/ w A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )
28 fveq2 5534 . . . . . . . 8  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
2928eqeq1d 2198 . . . . . . 7  |-  ( w  =  x  ->  (
( F `  w
)  =  ( F `
 y )  <->  ( F `  x )  =  ( F `  y ) ) )
30 equequ1 1723 . . . . . . 7  |-  ( w  =  x  ->  (
w  =  y  <->  x  =  y ) )
3129, 30imbi12d 234 . . . . . 6  |-  ( w  =  x  ->  (
( ( F `  w )  =  ( F `  y )  ->  w  =  y )  <->  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
3231ralbidv 2490 . . . . 5  |-  ( w  =  x  ->  ( A. y  e.  A  ( ( F `  w )  =  ( F `  y )  ->  w  =  y )  <->  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
3326, 27, 32cbvral 2714 . . . 4  |-  ( A. w  e.  A  A. y  e.  A  (
( F `  w
)  =  ( F `
 y )  ->  w  =  y )  <->  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3416, 33bitri 184 . . 3  |-  ( A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )  <->  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
3534anbi2i 457 . 2  |-  ( ( F : A --> B  /\  A. w  e.  A  A. v  e.  A  (
( F `  w
)  =  ( F `
 v )  ->  w  =  v )
)  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
361, 35bitri 184 1  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/_wnfc 2319   A.wral 2468   -->wf 5231   -1-1->wf1 5232   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fv 5243
This theorem is referenced by:  f1mpt  5793  dom2lem  6798
  Copyright terms: Public domain W3C validator