Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff13f | Unicode version |
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
dff13f.1 | |
dff13f.2 |
Ref | Expression |
---|---|
dff13f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff13 5747 | . 2 | |
2 | dff13f.2 | . . . . . . . . 9 | |
3 | nfcv 2312 | . . . . . . . . 9 | |
4 | 2, 3 | nffv 5506 | . . . . . . . 8 |
5 | nfcv 2312 | . . . . . . . . 9 | |
6 | 2, 5 | nffv 5506 | . . . . . . . 8 |
7 | 4, 6 | nfeq 2320 | . . . . . . 7 |
8 | nfv 1521 | . . . . . . 7 | |
9 | 7, 8 | nfim 1565 | . . . . . 6 |
10 | nfv 1521 | . . . . . 6 | |
11 | fveq2 5496 | . . . . . . . 8 | |
12 | 11 | eqeq2d 2182 | . . . . . . 7 |
13 | equequ2 1706 | . . . . . . 7 | |
14 | 12, 13 | imbi12d 233 | . . . . . 6 |
15 | 9, 10, 14 | cbvral 2692 | . . . . 5 |
16 | 15 | ralbii 2476 | . . . 4 |
17 | nfcv 2312 | . . . . . 6 | |
18 | dff13f.1 | . . . . . . . . 9 | |
19 | nfcv 2312 | . . . . . . . . 9 | |
20 | 18, 19 | nffv 5506 | . . . . . . . 8 |
21 | nfcv 2312 | . . . . . . . . 9 | |
22 | 18, 21 | nffv 5506 | . . . . . . . 8 |
23 | 20, 22 | nfeq 2320 | . . . . . . 7 |
24 | nfv 1521 | . . . . . . 7 | |
25 | 23, 24 | nfim 1565 | . . . . . 6 |
26 | 17, 25 | nfralxy 2508 | . . . . 5 |
27 | nfv 1521 | . . . . 5 | |
28 | fveq2 5496 | . . . . . . . 8 | |
29 | 28 | eqeq1d 2179 | . . . . . . 7 |
30 | equequ1 1705 | . . . . . . 7 | |
31 | 29, 30 | imbi12d 233 | . . . . . 6 |
32 | 31 | ralbidv 2470 | . . . . 5 |
33 | 26, 27, 32 | cbvral 2692 | . . . 4 |
34 | 16, 33 | bitri 183 | . . 3 |
35 | 34 | anbi2i 454 | . 2 |
36 | 1, 35 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wnfc 2299 wral 2448 wf 5194 wf1 5195 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fv 5206 |
This theorem is referenced by: f1mpt 5750 dom2lem 6750 |
Copyright terms: Public domain | W3C validator |