| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff13f | Unicode version | ||
| Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.) |
| Ref | Expression |
|---|---|
| dff13f.1 |
|
| dff13f.2 |
|
| Ref | Expression |
|---|---|
| dff13f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 5891 |
. 2
| |
| 2 | dff13f.2 |
. . . . . . . . 9
| |
| 3 | nfcv 2372 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nffv 5636 |
. . . . . . . 8
|
| 5 | nfcv 2372 |
. . . . . . . . 9
| |
| 6 | 2, 5 | nffv 5636 |
. . . . . . . 8
|
| 7 | 4, 6 | nfeq 2380 |
. . . . . . 7
|
| 8 | nfv 1574 |
. . . . . . 7
| |
| 9 | 7, 8 | nfim 1618 |
. . . . . 6
|
| 10 | nfv 1574 |
. . . . . 6
| |
| 11 | fveq2 5626 |
. . . . . . . 8
| |
| 12 | 11 | eqeq2d 2241 |
. . . . . . 7
|
| 13 | equequ2 1759 |
. . . . . . 7
| |
| 14 | 12, 13 | imbi12d 234 |
. . . . . 6
|
| 15 | 9, 10, 14 | cbvral 2761 |
. . . . 5
|
| 16 | 15 | ralbii 2536 |
. . . 4
|
| 17 | nfcv 2372 |
. . . . . 6
| |
| 18 | dff13f.1 |
. . . . . . . . 9
| |
| 19 | nfcv 2372 |
. . . . . . . . 9
| |
| 20 | 18, 19 | nffv 5636 |
. . . . . . . 8
|
| 21 | nfcv 2372 |
. . . . . . . . 9
| |
| 22 | 18, 21 | nffv 5636 |
. . . . . . . 8
|
| 23 | 20, 22 | nfeq 2380 |
. . . . . . 7
|
| 24 | nfv 1574 |
. . . . . . 7
| |
| 25 | 23, 24 | nfim 1618 |
. . . . . 6
|
| 26 | 17, 25 | nfralxy 2568 |
. . . . 5
|
| 27 | nfv 1574 |
. . . . 5
| |
| 28 | fveq2 5626 |
. . . . . . . 8
| |
| 29 | 28 | eqeq1d 2238 |
. . . . . . 7
|
| 30 | equequ1 1758 |
. . . . . . 7
| |
| 31 | 29, 30 | imbi12d 234 |
. . . . . 6
|
| 32 | 31 | ralbidv 2530 |
. . . . 5
|
| 33 | 26, 27, 32 | cbvral 2761 |
. . . 4
|
| 34 | 16, 33 | bitri 184 |
. . 3
|
| 35 | 34 | anbi2i 457 |
. 2
|
| 36 | 1, 35 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fv 5325 |
| This theorem is referenced by: f1mpt 5894 dom2lem 6921 |
| Copyright terms: Public domain | W3C validator |