ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeu2 Unicode version

Theorem funeu2 5193
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
funeu2  |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F
)  ->  E! y <. A ,  y >.  e.  F )
Distinct variable groups:    y, A    y, F
Allowed substitution hint:    B( y)

Proof of Theorem funeu2
StepHypRef Expression
1 df-br 3966 . 2  |-  ( A F B  <->  <. A ,  B >.  e.  F )
2 funeu 5192 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
3 df-br 3966 . . . 4  |-  ( A F y  <->  <. A , 
y >.  e.  F )
43eubii 2015 . . 3  |-  ( E! y  A F y  <-> 
E! y <. A , 
y >.  e.  F )
52, 4sylib 121 . 2  |-  ( ( Fun  F  /\  A F B )  ->  E! y <. A ,  y
>.  e.  F )
61, 5sylan2br 286 1  |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F
)  ->  E! y <. A ,  y >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E!weu 2006    e. wcel 2128   <.cop 3563   class class class wbr 3965   Fun wfun 5161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-fun 5169
This theorem is referenced by:  funssres  5209
  Copyright terms: Public domain W3C validator