ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeu2 Unicode version

Theorem funeu2 5243
Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
funeu2  |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F
)  ->  E! y <. A ,  y >.  e.  F )
Distinct variable groups:    y, A    y, F
Allowed substitution hint:    B( y)

Proof of Theorem funeu2
StepHypRef Expression
1 df-br 4005 . 2  |-  ( A F B  <->  <. A ,  B >.  e.  F )
2 funeu 5242 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
3 df-br 4005 . . . 4  |-  ( A F y  <->  <. A , 
y >.  e.  F )
43eubii 2035 . . 3  |-  ( E! y  A F y  <-> 
E! y <. A , 
y >.  e.  F )
52, 4sylib 122 . 2  |-  ( ( Fun  F  /\  A F B )  ->  E! y <. A ,  y
>.  e.  F )
61, 5sylan2br 288 1  |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F
)  ->  E! y <. A ,  y >.  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E!weu 2026    e. wcel 2148   <.cop 3596   class class class wbr 4004   Fun wfun 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219
This theorem is referenced by:  funssres  5259
  Copyright terms: Public domain W3C validator