ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dom4g GIF version

Theorem f1dom4g 6843
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg 6848 does not require the Axiom of Collection nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1dom4g (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)

Proof of Theorem f1dom4g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1eq1 5475 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝐴1-1𝐵𝐹:𝐴1-1𝐵))
21spcegv 2860 . . . 4 (𝐹𝑉 → (𝐹:𝐴1-1𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵))
32imp 124 . . 3 ((𝐹𝑉𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
433ad2antl1 1161 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐴1-1𝐵)
5 brdom2g 6835 . . . 4 ((𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
653adant1 1017 . . 3 ((𝐹𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
76adantr 276 . 2 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
84, 7mpbird 167 1 (((𝐹𝑉𝐴𝑊𝐵𝑋) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wex 1514  wcel 2175   class class class wbr 4043  1-1wf1 5267  cdom 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-dom 6828
This theorem is referenced by:  domssr  6868
  Copyright terms: Public domain W3C validator