ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domssr Unicode version

Theorem domssr 6868
Description: If  C is a superset of  B and  B dominates  A, then  C also dominates  A. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
domssr  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  ~<_  C )

Proof of Theorem domssr
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6837 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
213ad2ant3 1022 . 2  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  E. f 
f : A -1-1-> B
)
3 simp2 1000 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  B  C_  C )
4 reldom 6831 . . . . 5  |-  Rel  ~<_
54brrelex1i 4717 . . . 4  |-  ( A  ~<_  B  ->  A  e.  _V )
653ad2ant3 1022 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  e.  _V )
7 simp1 999 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  C  e.  V )
83, 6, 7jca32 310 . 2  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  ( B  C_  C  /\  ( A  e.  _V  /\  C  e.  V ) ) )
9 f1ss 5486 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  C_  C )  ->  f : A -1-1-> C )
10 vex 2774 . . . . . . 7  |-  f  e. 
_V
11 f1dom4g 6843 . . . . . . 7  |-  ( ( ( f  e.  _V  /\  A  e.  _V  /\  C  e.  V )  /\  f : A -1-1-> C
)  ->  A  ~<_  C )
1210, 11mp3anl1 1343 . . . . . 6  |-  ( ( ( A  e.  _V  /\  C  e.  V )  /\  f : A -1-1-> C )  ->  A  ~<_  C )
1312ancoms 268 . . . . 5  |-  ( ( f : A -1-1-> C  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C )
149, 13sylan 283 . . . 4  |-  ( ( ( f : A -1-1-> B  /\  B  C_  C
)  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C )
1514expl 378 . . 3  |-  ( f : A -1-1-> B  -> 
( ( B  C_  C  /\  ( A  e. 
_V  /\  C  e.  V ) )  ->  A  ~<_  C ) )
1615exlimiv 1620 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( ( B 
C_  C  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C ) )
172, 8, 16sylc 62 1  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   E.wex 1514    e. wcel 2175   _Vcvv 2771    C_ wss 3165   class class class wbr 4043   -1-1->wf1 5267    ~<_ cdom 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-dom 6828
This theorem is referenced by:  rex2dom  6909
  Copyright terms: Public domain W3C validator