| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domssr | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| domssr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6896 |
. . 3
| |
| 2 | 1 | 3ad2ant3 1044 |
. 2
|
| 3 | simp2 1022 |
. . 3
| |
| 4 | reldom 6890 |
. . . . 5
| |
| 5 | 4 | brrelex1i 4761 |
. . . 4
|
| 6 | 5 | 3ad2ant3 1044 |
. . 3
|
| 7 | simp1 1021 |
. . 3
| |
| 8 | 3, 6, 7 | jca32 310 |
. 2
|
| 9 | f1ss 5536 |
. . . . 5
| |
| 10 | vex 2802 |
. . . . . . 7
| |
| 11 | f1dom4g 6902 |
. . . . . . 7
| |
| 12 | 10, 11 | mp3anl1 1365 |
. . . . . 6
|
| 13 | 12 | ancoms 268 |
. . . . 5
|
| 14 | 9, 13 | sylan 283 |
. . . 4
|
| 15 | 14 | expl 378 |
. . 3
|
| 16 | 15 | exlimiv 1644 |
. 2
|
| 17 | 2, 8, 16 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-dom 6887 |
| This theorem is referenced by: rex2dom 6969 |
| Copyright terms: Public domain | W3C validator |