ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domssr Unicode version

Theorem domssr 6927
Description: If  C is a superset of  B and  B dominates  A, then  C also dominates  A. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
domssr  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  ~<_  C )

Proof of Theorem domssr
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6896 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
213ad2ant3 1044 . 2  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  E. f 
f : A -1-1-> B
)
3 simp2 1022 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  B  C_  C )
4 reldom 6890 . . . . 5  |-  Rel  ~<_
54brrelex1i 4761 . . . 4  |-  ( A  ~<_  B  ->  A  e.  _V )
653ad2ant3 1044 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  e.  _V )
7 simp1 1021 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  C  e.  V )
83, 6, 7jca32 310 . 2  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  ( B  C_  C  /\  ( A  e.  _V  /\  C  e.  V ) ) )
9 f1ss 5536 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  C_  C )  ->  f : A -1-1-> C )
10 vex 2802 . . . . . . 7  |-  f  e. 
_V
11 f1dom4g 6902 . . . . . . 7  |-  ( ( ( f  e.  _V  /\  A  e.  _V  /\  C  e.  V )  /\  f : A -1-1-> C
)  ->  A  ~<_  C )
1210, 11mp3anl1 1365 . . . . . 6  |-  ( ( ( A  e.  _V  /\  C  e.  V )  /\  f : A -1-1-> C )  ->  A  ~<_  C )
1312ancoms 268 . . . . 5  |-  ( ( f : A -1-1-> C  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C )
149, 13sylan 283 . . . 4  |-  ( ( ( f : A -1-1-> B  /\  B  C_  C
)  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C )
1514expl 378 . . 3  |-  ( f : A -1-1-> B  -> 
( ( B  C_  C  /\  ( A  e. 
_V  /\  C  e.  V ) )  ->  A  ~<_  C ) )
1615exlimiv 1644 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( ( B 
C_  C  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C ) )
172, 8, 16sylc 62 1  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002   E.wex 1538    e. wcel 2200   _Vcvv 2799    C_ wss 3197   class class class wbr 4082   -1-1->wf1 5314    ~<_ cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-dom 6887
This theorem is referenced by:  rex2dom  6969
  Copyright terms: Public domain W3C validator