ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domssr Unicode version

Theorem domssr 6882
Description: If  C is a superset of  B and  B dominates  A, then  C also dominates  A. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
domssr  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  ~<_  C )

Proof of Theorem domssr
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 6851 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
213ad2ant3 1023 . 2  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  E. f 
f : A -1-1-> B
)
3 simp2 1001 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  B  C_  C )
4 reldom 6845 . . . . 5  |-  Rel  ~<_
54brrelex1i 4726 . . . 4  |-  ( A  ~<_  B  ->  A  e.  _V )
653ad2ant3 1023 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  e.  _V )
7 simp1 1000 . . 3  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  C  e.  V )
83, 6, 7jca32 310 . 2  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  ( B  C_  C  /\  ( A  e.  _V  /\  C  e.  V ) ) )
9 f1ss 5499 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  C_  C )  ->  f : A -1-1-> C )
10 vex 2776 . . . . . . 7  |-  f  e. 
_V
11 f1dom4g 6857 . . . . . . 7  |-  ( ( ( f  e.  _V  /\  A  e.  _V  /\  C  e.  V )  /\  f : A -1-1-> C
)  ->  A  ~<_  C )
1210, 11mp3anl1 1344 . . . . . 6  |-  ( ( ( A  e.  _V  /\  C  e.  V )  /\  f : A -1-1-> C )  ->  A  ~<_  C )
1312ancoms 268 . . . . 5  |-  ( ( f : A -1-1-> C  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C )
149, 13sylan 283 . . . 4  |-  ( ( ( f : A -1-1-> B  /\  B  C_  C
)  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C )
1514expl 378 . . 3  |-  ( f : A -1-1-> B  -> 
( ( B  C_  C  /\  ( A  e. 
_V  /\  C  e.  V ) )  ->  A  ~<_  C ) )
1615exlimiv 1622 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( ( B 
C_  C  /\  ( A  e.  _V  /\  C  e.  V ) )  ->  A  ~<_  C ) )
172, 8, 16sylc 62 1  |-  ( ( C  e.  V  /\  B  C_  C  /\  A  ~<_  B )  ->  A  ~<_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981   E.wex 1516    e. wcel 2177   _Vcvv 2773    C_ wss 3170   class class class wbr 4051   -1-1->wf1 5277    ~<_ cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-dom 6842
This theorem is referenced by:  rex2dom  6924
  Copyright terms: Public domain W3C validator