ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco2 Unicode version

Theorem fco2 5462
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )

Proof of Theorem fco2
StepHypRef Expression
1 fco 5461 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
) : A --> C )
2 frn 5454 . . . . 5  |-  ( G : A --> B  ->  ran  G  C_  B )
3 cores 5205 . . . . 5  |-  ( ran 
G  C_  B  ->  ( ( F  |`  B )  o.  G )  =  ( F  o.  G
) )
42, 3syl 14 . . . 4  |-  ( G : A --> B  -> 
( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
54adantl 277 . . 3  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
65feq1d 5432 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( ( F  |`  B )  o.  G ) : A --> C 
<->  ( F  o.  G
) : A --> C ) )
71, 6mpbid 147 1  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    C_ wss 3174   ran crn 4694    |` cres 4695    o. ccom 4697   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  isomninnlem  16171  iswomninnlem  16190  ismkvnnlem  16193
  Copyright terms: Public domain W3C validator