Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fco2 | GIF version |
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
Ref | Expression |
---|---|
fco2 | ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco 5353 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶) | |
2 | frn 5346 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ran 𝐺 ⊆ 𝐵) | |
3 | cores 5107 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
5 | 4 | adantl 275 | . . 3 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
6 | 5 | feq1d 5324 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):𝐴⟶𝐶)) |
7 | 1, 6 | mpbid 146 | 1 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ⊆ wss 3116 ran crn 4605 ↾ cres 4606 ∘ ccom 4608 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |