![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fco2 | GIF version |
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
Ref | Expression |
---|---|
fco2 | ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco 5420 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶) | |
2 | frn 5413 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ran 𝐺 ⊆ 𝐵) | |
3 | cores 5170 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
5 | 4 | adantl 277 | . . 3 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
6 | 5 | feq1d 5391 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):𝐴⟶𝐶)) |
7 | 1, 6 | mpbid 147 | 1 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ⊆ wss 3154 ran crn 4661 ↾ cres 4662 ∘ ccom 4664 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-fun 5257 df-fn 5258 df-f 5259 |
This theorem is referenced by: isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |