ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco2 GIF version

Theorem fco2 5436
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco2
StepHypRef Expression
1 fco 5435 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺):𝐴𝐶)
2 frn 5428 . . . . 5 (𝐺:𝐴𝐵 → ran 𝐺𝐵)
3 cores 5183 . . . . 5 (ran 𝐺𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
42, 3syl 14 . . . 4 (𝐺:𝐴𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
54adantl 277 . . 3 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
65feq1d 5406 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (((𝐹𝐵) ∘ 𝐺):𝐴𝐶 ↔ (𝐹𝐺):𝐴𝐶))
71, 6mpbid 147 1 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wss 3165  ran crn 4674  cres 4675  ccom 4677  wf 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-fun 5270  df-fn 5271  df-f 5272
This theorem is referenced by:  isomninnlem  15833  iswomninnlem  15852  ismkvnnlem  15855
  Copyright terms: Public domain W3C validator