ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco2 GIF version

Theorem fco2 5420
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco2
StepHypRef Expression
1 fco 5419 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺):𝐴𝐶)
2 frn 5412 . . . . 5 (𝐺:𝐴𝐵 → ran 𝐺𝐵)
3 cores 5169 . . . . 5 (ran 𝐺𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
42, 3syl 14 . . . 4 (𝐺:𝐴𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
54adantl 277 . . 3 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
65feq1d 5390 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (((𝐹𝐵) ∘ 𝐺):𝐴𝐶 ↔ (𝐹𝐺):𝐴𝐶))
71, 6mpbid 147 1 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wss 3153  ran crn 4660  cres 4661  ccom 4663  wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  isomninnlem  15520  iswomninnlem  15539  ismkvnnlem  15542
  Copyright terms: Public domain W3C validator