ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptdf Unicode version

Theorem fmptdf 5675
Description: A version of fmptd 5672 using bound-variable hypothesis instead of a distinct variable condition for  ph. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1  |-  F/ x ph
fmptdf.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptdf.3  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptdf  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)    F( x)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3  |-  F/ x ph
2 fmptdf.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
32ex 115 . . 3  |-  ( ph  ->  ( x  e.  A  ->  B  e.  C ) )
41, 3ralrimi 2548 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
5 fmptdf.3 . . 3  |-  F  =  ( x  e.  A  |->  B )
65fmpt 5668 . 2  |-  ( A. x  e.  A  B  e.  C  <->  F : A --> C )
74, 6sylib 122 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   F/wnf 1460    e. wcel 2148   A.wral 2455    |-> cmpt 4066   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by:  mkvprop  7158
  Copyright terms: Public domain W3C validator