ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptdf Unicode version

Theorem fmptdf 5642
Description: A version of fmptd 5639 using bound-variable hypothesis instead of a distinct variable condition for  ph. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
fmptdf.1  |-  F/ x ph
fmptdf.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptdf.3  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptdf  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    ph( x)    B( x)    F( x)

Proof of Theorem fmptdf
StepHypRef Expression
1 fmptdf.1 . . 3  |-  F/ x ph
2 fmptdf.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
32ex 114 . . 3  |-  ( ph  ->  ( x  e.  A  ->  B  e.  C ) )
41, 3ralrimi 2537 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
5 fmptdf.3 . . 3  |-  F  =  ( x  e.  A  |->  B )
65fmpt 5635 . 2  |-  ( A. x  e.  A  B  e.  C  <->  F : A --> C )
74, 6sylib 121 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   F/wnf 1448    e. wcel 2136   A.wral 2444    |-> cmpt 4043   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  mkvprop  7122
  Copyright terms: Public domain W3C validator