ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptd Unicode version

Theorem fmptd 5789
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
fmptd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptd.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptd  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fmptd
StepHypRef Expression
1 fmptd.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
21ralrimiva 2603 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
3 fmptd.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43fmpt 5785 . 2  |-  ( A. x  e.  A  B  e.  C  <->  F : A --> C )
52, 4sylib 122 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    |-> cmpt 4145   -->wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by:  fmpttd  5790  fmptco  5801  fliftrel  5916  off  6231  caofinvl  6244  fdiagfn  6839  mapxpen  7009  xpmapenlem  7010  updjudhf  7246  enumctlemm  7281  fodjuf  7312  nninfwlporlem  7340  nninfwlpoimlemg  7342  cc2lem  7452  caucvgsrlemf  7979  caucvgsrlemofff  7984  axcaucvglemf  8083  monoord2  10708  iseqf1olemqf  10726  cvg1nlemf  11494  resqrexlemsqa  11535  climcvg1nlem  11860  summodclem2a  11892  crth  12746  eulerthlem1  12749  4sqlem11  12924  ctiunctlemf  13009  mulgnngsum  13664  conjghm  13813  conjnmz  13816  qusghm  13819  gsumfzmptfidmadd  13876  mulgghm2  14572  psr1clfi  14652  txcnmpt  14947  txlm  14953  mulc1cncf  15263  addccncf  15274  negcncf  15279  lgsfcl2  15685  lgseisenlem1  15749  nnsf  16371  nninfself  16379
  Copyright terms: Public domain W3C validator