| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptd | Unicode version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| fmptd.1 |
|
| fmptd.2 |
|
| Ref | Expression |
|---|---|
| fmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptd.1 |
. . 3
| |
| 2 | 1 | ralrimiva 2581 |
. 2
|
| 3 | fmptd.2 |
. . 3
| |
| 4 | 3 | fmpt 5753 |
. 2
|
| 5 | 2, 4 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 |
| This theorem is referenced by: fmpttd 5758 fmptco 5769 fliftrel 5884 off 6194 caofinvl 6207 fdiagfn 6802 mapxpen 6970 xpmapenlem 6971 updjudhf 7207 enumctlemm 7242 fodjuf 7273 nninfwlporlem 7301 nninfwlpoimlemg 7303 cc2lem 7413 caucvgsrlemf 7940 caucvgsrlemofff 7945 axcaucvglemf 8044 monoord2 10668 iseqf1olemqf 10686 cvg1nlemf 11409 resqrexlemsqa 11450 climcvg1nlem 11775 summodclem2a 11807 crth 12661 eulerthlem1 12664 4sqlem11 12839 ctiunctlemf 12924 mulgnngsum 13578 conjghm 13727 conjnmz 13730 qusghm 13733 gsumfzmptfidmadd 13790 mulgghm2 14485 psr1clfi 14565 txcnmpt 14860 txlm 14866 mulc1cncf 15176 addccncf 15187 negcncf 15192 lgsfcl2 15598 lgseisenlem1 15662 nnsf 16144 nninfself 16152 |
| Copyright terms: Public domain | W3C validator |