| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptd | Unicode version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| fmptd.1 |
|
| fmptd.2 |
|
| Ref | Expression |
|---|---|
| fmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptd.1 |
. . 3
| |
| 2 | 1 | ralrimiva 2579 |
. 2
|
| 3 | fmptd.2 |
. . 3
| |
| 4 | 3 | fmpt 5730 |
. 2
|
| 5 | 2, 4 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: fmpttd 5735 fmptco 5746 fliftrel 5861 off 6171 caofinvl 6184 fdiagfn 6779 mapxpen 6945 xpmapenlem 6946 updjudhf 7181 enumctlemm 7216 fodjuf 7247 nninfwlporlem 7275 nninfwlpoimlemg 7277 cc2lem 7378 caucvgsrlemf 7905 caucvgsrlemofff 7910 axcaucvglemf 8009 monoord2 10631 iseqf1olemqf 10649 cvg1nlemf 11294 resqrexlemsqa 11335 climcvg1nlem 11660 summodclem2a 11692 crth 12546 eulerthlem1 12549 4sqlem11 12724 ctiunctlemf 12809 mulgnngsum 13463 conjghm 13612 conjnmz 13615 qusghm 13618 gsumfzmptfidmadd 13675 mulgghm2 14370 psr1clfi 14450 txcnmpt 14745 txlm 14751 mulc1cncf 15061 addccncf 15072 negcncf 15077 lgsfcl2 15483 lgseisenlem1 15547 nnsf 15946 nninfself 15954 |
| Copyright terms: Public domain | W3C validator |