ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptd Unicode version

Theorem fmptd 5734
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
fmptd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptd.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptd  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fmptd
StepHypRef Expression
1 fmptd.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
21ralrimiva 2579 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
3 fmptd.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43fmpt 5730 . 2  |-  ( A. x  e.  A  B  e.  C  <->  F : A --> C )
52, 4sylib 122 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484    |-> cmpt 4105   -->wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279
This theorem is referenced by:  fmpttd  5735  fmptco  5746  fliftrel  5861  off  6171  caofinvl  6184  fdiagfn  6779  mapxpen  6945  xpmapenlem  6946  updjudhf  7181  enumctlemm  7216  fodjuf  7247  nninfwlporlem  7275  nninfwlpoimlemg  7277  cc2lem  7378  caucvgsrlemf  7905  caucvgsrlemofff  7910  axcaucvglemf  8009  monoord2  10631  iseqf1olemqf  10649  cvg1nlemf  11294  resqrexlemsqa  11335  climcvg1nlem  11660  summodclem2a  11692  crth  12546  eulerthlem1  12549  4sqlem11  12724  ctiunctlemf  12809  mulgnngsum  13463  conjghm  13612  conjnmz  13615  qusghm  13618  gsumfzmptfidmadd  13675  mulgghm2  14370  psr1clfi  14450  txcnmpt  14745  txlm  14751  mulc1cncf  15061  addccncf  15072  negcncf  15077  lgsfcl2  15483  lgseisenlem1  15547  nnsf  15946  nninfself  15954
  Copyright terms: Public domain W3C validator