| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptd | Unicode version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| fmptd.1 |
|
| fmptd.2 |
|
| Ref | Expression |
|---|---|
| fmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptd.1 |
. . 3
| |
| 2 | 1 | ralrimiva 2603 |
. 2
|
| 3 | fmptd.2 |
. . 3
| |
| 4 | 3 | fmpt 5785 |
. 2
|
| 5 | 2, 4 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: fmpttd 5790 fmptco 5801 fliftrel 5916 off 6231 caofinvl 6244 fdiagfn 6839 mapxpen 7009 xpmapenlem 7010 updjudhf 7246 enumctlemm 7281 fodjuf 7312 nninfwlporlem 7340 nninfwlpoimlemg 7342 cc2lem 7452 caucvgsrlemf 7979 caucvgsrlemofff 7984 axcaucvglemf 8083 monoord2 10708 iseqf1olemqf 10726 cvg1nlemf 11494 resqrexlemsqa 11535 climcvg1nlem 11860 summodclem2a 11892 crth 12746 eulerthlem1 12749 4sqlem11 12924 ctiunctlemf 13009 mulgnngsum 13664 conjghm 13813 conjnmz 13816 qusghm 13819 gsumfzmptfidmadd 13876 mulgghm2 14572 psr1clfi 14652 txcnmpt 14947 txlm 14953 mulc1cncf 15263 addccncf 15274 negcncf 15279 lgsfcl2 15685 lgseisenlem1 15749 nnsf 16371 nninfself 16379 |
| Copyright terms: Public domain | W3C validator |