Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmptd | Unicode version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
fmptd.1 | |
fmptd.2 |
Ref | Expression |
---|---|
fmptd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptd.1 | . . 3 | |
2 | 1 | ralrimiva 2530 | . 2 |
3 | fmptd.2 | . . 3 | |
4 | 3 | fmpt 5614 | . 2 |
5 | 2, 4 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 cmpt 4025 wf 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 |
This theorem is referenced by: fmpttd 5619 fmptco 5630 fliftrel 5737 off 6038 caofinvl 6048 fdiagfn 6630 mapxpen 6786 xpmapenlem 6787 updjudhf 7013 enumctlemm 7048 fodjuf 7071 cc2lem 7169 caucvgsrlemf 7695 caucvgsrlemofff 7700 axcaucvglemf 7799 monoord2 10358 iseqf1olemqf 10372 cvg1nlemf 10865 resqrexlemsqa 10906 climcvg1nlem 11228 summodclem2a 11260 crth 12076 eulerthlem1 12079 ctiunctlemf 12139 txcnmpt 12633 txlm 12639 mulc1cncf 12936 addccncf 12946 negcncf 12948 nnsf 13538 nninfself 13547 |
Copyright terms: Public domain | W3C validator |