Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmptd | Unicode version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
fmptd.1 | |
fmptd.2 |
Ref | Expression |
---|---|
fmptd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptd.1 | . . 3 | |
2 | 1 | ralrimiva 2539 | . 2 |
3 | fmptd.2 | . . 3 | |
4 | 3 | fmpt 5635 | . 2 |
5 | 2, 4 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cmpt 4043 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: fmpttd 5640 fmptco 5651 fliftrel 5760 off 6062 caofinvl 6072 fdiagfn 6658 mapxpen 6814 xpmapenlem 6815 updjudhf 7044 enumctlemm 7079 fodjuf 7109 cc2lem 7207 caucvgsrlemf 7733 caucvgsrlemofff 7738 axcaucvglemf 7837 monoord2 10412 iseqf1olemqf 10426 cvg1nlemf 10925 resqrexlemsqa 10966 climcvg1nlem 11290 summodclem2a 11322 crth 12156 eulerthlem1 12159 ctiunctlemf 12371 txcnmpt 12913 txlm 12919 mulc1cncf 13216 addccncf 13226 negcncf 13228 lgsfcl2 13547 nnsf 13885 nninfself 13893 |
Copyright terms: Public domain | W3C validator |