ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptd Unicode version

Theorem fmptd 5713
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
fmptd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptd.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptd  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fmptd
StepHypRef Expression
1 fmptd.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
21ralrimiva 2567 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
3 fmptd.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43fmpt 5709 . 2  |-  ( A. x  e.  A  B  e.  C  <->  F : A --> C )
52, 4sylib 122 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472    |-> cmpt 4091   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  fmpttd  5714  fmptco  5725  fliftrel  5836  off  6145  caofinvl  6157  fdiagfn  6748  mapxpen  6906  xpmapenlem  6907  updjudhf  7140  enumctlemm  7175  fodjuf  7206  nninfwlporlem  7234  nninfwlpoimlemg  7236  cc2lem  7328  caucvgsrlemf  7854  caucvgsrlemofff  7859  axcaucvglemf  7958  monoord2  10560  iseqf1olemqf  10578  cvg1nlemf  11130  resqrexlemsqa  11171  climcvg1nlem  11495  summodclem2a  11527  crth  12365  eulerthlem1  12368  4sqlem11  12542  ctiunctlemf  12598  mulgnngsum  13200  conjghm  13349  conjnmz  13352  qusghm  13355  gsumfzmptfidmadd  13412  mulgghm2  14107  txcnmpt  14452  txlm  14458  mulc1cncf  14768  addccncf  14779  negcncf  14784  lgsfcl2  15163  lgseisenlem1  15227  nnsf  15565  nninfself  15573
  Copyright terms: Public domain W3C validator