ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptd Unicode version

Theorem fmptd 5397
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
fmptd.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
fmptd.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fmptd  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fmptd
StepHypRef Expression
1 fmptd.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
21ralrimiva 2440 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
3 fmptd.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43fmpt 5394 . 2  |-  ( A. x  e.  A  B  e.  C  <->  F : A --> C )
52, 4sylib 120 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2353    |-> cmpt 3865   -->wf 4965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fv 4977
This theorem is referenced by:  fmptco  5406  fliftrel  5511  off  5803  caofinvl  5812  fdiagfn  6379  mapxpen  6494  xpmapenlem  6495  updjudhf  6677  fodjuomnilemf  6705  caucvgsrlemf  7240  caucvgsrlemofff  7245  axcaucvglemf  7334  nnnninf  8645  monoord2  9771  cvg1nlemf  10243  resqrexlemsqa  10284  climcvg1nlem  10560  crth  10980  nnsf  11236  nninfself  11246
  Copyright terms: Public domain W3C validator