ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt3d Unicode version

Theorem fmpt3d 5714
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
fmpt3d.1  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fmpt3d.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
Assertion
Ref Expression
fmpt3d  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fmpt3d
StepHypRef Expression
1 fmpt3d.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  C )
21fmpttd 5713 . 2  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> C )
3 fmpt3d.1 . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
43feq1d 5390 . 2  |-  ( ph  ->  ( F : A --> C 
<->  ( x  e.  A  |->  B ) : A --> C ) )
52, 4mpbird 167 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    |-> cmpt 4090   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262
This theorem is referenced by:  1arithlem3  12503  grpinvf  13119  lspf  13885  bj-charfun  15299  bj-charfundc  15300
  Copyright terms: Public domain W3C validator