ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptsn Unicode version

Theorem fmptsn 5673
Description: Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fmptsn  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem fmptsn
StepHypRef Expression
1 xpsng 5659 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B } )  =  { <. A ,  B >. } )
2 fconstmpt 4650 . 2  |-  ( { A }  X.  { B } )  =  ( x  e.  { A }  |->  B )
31, 2eqtr3di 2213 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {csn 3575   <.cop 3578    |-> cmpt 4042    X. cxp 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194
This theorem is referenced by:  fmptap  5674  fmptapd  5675
  Copyright terms: Public domain W3C validator