ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptsn Unicode version

Theorem fmptsn 5726
Description: Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fmptsn  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem fmptsn
StepHypRef Expression
1 xpsng 5712 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B } )  =  { <. A ,  B >. } )
2 fconstmpt 4691 . 2  |-  ( { A }  X.  { B } )  =  ( x  e.  { A }  |->  B )
31, 2eqtr3di 2237 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {csn 3607   <.cop 3610    |-> cmpt 4079    X. cxp 4642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242
This theorem is referenced by:  fmptap  5727  fmptapd  5728
  Copyright terms: Public domain W3C validator