ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrovb Unicode version

Theorem fnbrovb 6045
Description: Value of a binary operation expressed as a binary relation. See also fnbrfvb 5671 for functions on Cartesian products. (Contributed by BJ, 15-Feb-2022.)
Assertion
Ref Expression
fnbrovb  |-  ( ( F  Fn  ( V  X.  W )  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( A F B )  =  C  <->  <. A ,  B >. F C ) )

Proof of Theorem fnbrovb
StepHypRef Expression
1 df-ov 6003 . . 3  |-  ( A F B )  =  ( F `  <. A ,  B >. )
21eqeq1i 2237 . 2  |-  ( ( A F B )  =  C  <->  ( F `  <. A ,  B >. )  =  C )
3 fnbrfvb2 5675 . 2  |-  ( ( F  Fn  ( V  X.  W )  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( F `  <. A ,  B >. )  =  C  <->  <. A ,  B >. F C ) )
42, 3bitrid 192 1  |-  ( ( F  Fn  ( V  X.  W )  /\  ( A  e.  V  /\  B  e.  W
) )  ->  (
( A F B )  =  C  <->  <. A ,  B >. F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   <.cop 3669   class class class wbr 4082    X. cxp 4716    Fn wfn 5312   ` cfv 5317  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator