ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elovimad Unicode version

Theorem elovimad 6044
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.)
Hypotheses
Ref Expression
elovimad.1  |-  ( ph  ->  A  e.  C )
elovimad.2  |-  ( ph  ->  B  e.  D )
elovimad.3  |-  ( ph  ->  Fun  F )
elovimad.4  |-  ( ph  ->  ( C  X.  D
)  C_  dom  F )
Assertion
Ref Expression
elovimad  |-  ( ph  ->  ( A F B )  e.  ( F
" ( C  X.  D ) ) )

Proof of Theorem elovimad
StepHypRef Expression
1 df-ov 6003 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 elovimad.1 . . . 4  |-  ( ph  ->  A  e.  C )
3 elovimad.2 . . . 4  |-  ( ph  ->  B  e.  D )
42, 3opelxpd 4751 . . 3  |-  ( ph  -> 
<. A ,  B >.  e.  ( C  X.  D
) )
5 elovimad.3 . . . 4  |-  ( ph  ->  Fun  F )
6 elovimad.4 . . . . 5  |-  ( ph  ->  ( C  X.  D
)  C_  dom  F )
76, 4sseldd 3225 . . . 4  |-  ( ph  -> 
<. A ,  B >.  e. 
dom  F )
8 funfvima 5870 . . . 4  |-  ( ( Fun  F  /\  <. A ,  B >.  e.  dom  F )  ->  ( <. A ,  B >.  e.  ( C  X.  D )  ->  ( F `  <. A ,  B >. )  e.  ( F "
( C  X.  D
) ) ) )
95, 7, 8syl2anc 411 . . 3  |-  ( ph  ->  ( <. A ,  B >.  e.  ( C  X.  D )  ->  ( F `  <. A ,  B >. )  e.  ( F " ( C  X.  D ) ) ) )
104, 9mpd 13 . 2  |-  ( ph  ->  ( F `  <. A ,  B >. )  e.  ( F " ( C  X.  D ) ) )
111, 10eqeltrid 2316 1  |-  ( ph  ->  ( A F B )  e.  ( F
" ( C  X.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   <.cop 3669    X. cxp 4716   dom cdm 4718   "cima 4721   Fun wfun 5311   ` cfv 5317  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator