Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnbrfvb | Unicode version |
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fnbrfvb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . 4 | |
2 | funfvex 5503 | . . . . . 6 | |
3 | 2 | funfni 5288 | . . . . 5 |
4 | eqeq2 2175 | . . . . . . . 8 | |
5 | breq2 3986 | . . . . . . . 8 | |
6 | 4, 5 | bibi12d 234 | . . . . . . 7 |
7 | 6 | imbi2d 229 | . . . . . 6 |
8 | fneu 5292 | . . . . . . 7 | |
9 | tz6.12c 5516 | . . . . . . 7 | |
10 | 8, 9 | syl 14 | . . . . . 6 |
11 | 7, 10 | vtoclg 2786 | . . . . 5 |
12 | 3, 11 | mpcom 36 | . . . 4 |
13 | 1, 12 | mpbii 147 | . . 3 |
14 | breq2 3986 | . . 3 | |
15 | 13, 14 | syl5ibcom 154 | . 2 |
16 | fnfun 5285 | . . . 4 | |
17 | funbrfv 5525 | . . . 4 | |
18 | 16, 17 | syl 14 | . . 3 |
19 | 18 | adantr 274 | . 2 |
20 | 15, 19 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 weu 2014 wcel 2136 cvv 2726 class class class wbr 3982 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: fnopfvb 5528 funbrfvb 5529 dffn5im 5532 fnsnfv 5545 fndmdif 5590 dffo4 5633 dff13 5736 isoini 5786 1stconst 6189 2ndconst 6190 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |