ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb Unicode version

Theorem fnbrfvb 5618
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )

Proof of Theorem fnbrfvb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . 4  |-  ( F `
 B )  =  ( F `  B
)
2 funfvex 5592 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  _V )
32funfni 5375 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B
)  e.  _V )
4 eqeq2 2214 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  (
( F `  B
)  =  x  <->  ( F `  B )  =  ( F `  B ) ) )
5 breq2 4047 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  ( B F x  <->  B F
( F `  B
) ) )
64, 5bibi12d 235 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  (
( ( F `  B )  =  x  <-> 
B F x )  <-> 
( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) ) )
76imbi2d 230 . . . . . 6  |-  ( x  =  ( F `  B )  ->  (
( ( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  x  <->  B F x ) )  <->  ( ( F  Fn  A  /\  B  e.  A )  ->  (
( F `  B
)  =  ( F `
 B )  <->  B F
( F `  B
) ) ) ) )
8 fneu 5379 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! x  B F x )
9 tz6.12c 5605 . . . . . . 7  |-  ( E! x  B F x  ->  ( ( F `
 B )  =  x  <->  B F x ) )
108, 9syl 14 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  x  <-> 
B F x ) )
117, 10vtoclg 2832 . . . . 5  |-  ( ( F `  B )  e.  _V  ->  (
( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  ( F `  B )  <->  B F
( F `  B
) ) ) )
123, 11mpcom 36 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) )
131, 12mpbii 148 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  B F ( F `
 B ) )
14 breq2 4047 . . 3  |-  ( ( F `  B )  =  C  ->  ( B F ( F `  B )  <->  B F C ) )
1513, 14syl5ibcom 155 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  ->  B F C ) )
16 fnfun 5370 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
17 funbrfv 5616 . . . 4  |-  ( Fun 
F  ->  ( B F C  ->  ( F `
 B )  =  C ) )
1816, 17syl 14 . . 3  |-  ( F  Fn  A  ->  ( B F C  ->  ( F `  B )  =  C ) )
1918adantr 276 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( B F C  ->  ( F `  B )  =  C ) )
2015, 19impbid 129 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E!weu 2053    e. wcel 2175   _Vcvv 2771   class class class wbr 4043   Fun wfun 5264    Fn wfn 5265   ` cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278
This theorem is referenced by:  fnopfvb  5619  funbrfvb  5620  dffn5im  5623  fnsnfv  5637  fndmdif  5684  dffo4  5727  dff13  5836  isoini  5886  1stconst  6306  2ndconst  6307  znleval  14386  pw1nct  15902
  Copyright terms: Public domain W3C validator