| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnbrfvb | Unicode version | ||
| Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnbrfvb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . . 4
| |
| 2 | funfvex 5578 |
. . . . . 6
| |
| 3 | 2 | funfni 5361 |
. . . . 5
|
| 4 | eqeq2 2206 |
. . . . . . . 8
| |
| 5 | breq2 4038 |
. . . . . . . 8
| |
| 6 | 4, 5 | bibi12d 235 |
. . . . . . 7
|
| 7 | 6 | imbi2d 230 |
. . . . . 6
|
| 8 | fneu 5365 |
. . . . . . 7
| |
| 9 | tz6.12c 5591 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 14 |
. . . . . 6
|
| 11 | 7, 10 | vtoclg 2824 |
. . . . 5
|
| 12 | 3, 11 | mpcom 36 |
. . . 4
|
| 13 | 1, 12 | mpbii 148 |
. . 3
|
| 14 | breq2 4038 |
. . 3
| |
| 15 | 13, 14 | syl5ibcom 155 |
. 2
|
| 16 | fnfun 5356 |
. . . 4
| |
| 17 | funbrfv 5602 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | 18 | adantr 276 |
. 2
|
| 20 | 15, 19 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: fnopfvb 5605 funbrfvb 5606 dffn5im 5609 fnsnfv 5623 fndmdif 5670 dffo4 5713 dff13 5818 isoini 5868 1stconst 6288 2ndconst 6289 znleval 14285 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |