Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnbrfvb | Unicode version |
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fnbrfvb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . . 4 | |
2 | funfvex 5513 | . . . . . 6 | |
3 | 2 | funfni 5298 | . . . . 5 |
4 | eqeq2 2180 | . . . . . . . 8 | |
5 | breq2 3993 | . . . . . . . 8 | |
6 | 4, 5 | bibi12d 234 | . . . . . . 7 |
7 | 6 | imbi2d 229 | . . . . . 6 |
8 | fneu 5302 | . . . . . . 7 | |
9 | tz6.12c 5526 | . . . . . . 7 | |
10 | 8, 9 | syl 14 | . . . . . 6 |
11 | 7, 10 | vtoclg 2790 | . . . . 5 |
12 | 3, 11 | mpcom 36 | . . . 4 |
13 | 1, 12 | mpbii 147 | . . 3 |
14 | breq2 3993 | . . 3 | |
15 | 13, 14 | syl5ibcom 154 | . 2 |
16 | fnfun 5295 | . . . 4 | |
17 | funbrfv 5535 | . . . 4 | |
18 | 16, 17 | syl 14 | . . 3 |
19 | 18 | adantr 274 | . 2 |
20 | 15, 19 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 weu 2019 wcel 2141 cvv 2730 class class class wbr 3989 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: fnopfvb 5538 funbrfvb 5539 dffn5im 5542 fnsnfv 5555 fndmdif 5601 dffo4 5644 dff13 5747 isoini 5797 1stconst 6200 2ndconst 6201 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |