ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb Unicode version

Theorem fnbrfvb 5601
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )

Proof of Theorem fnbrfvb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( F `
 B )  =  ( F `  B
)
2 funfvex 5575 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  _V )
32funfni 5358 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B
)  e.  _V )
4 eqeq2 2206 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  (
( F `  B
)  =  x  <->  ( F `  B )  =  ( F `  B ) ) )
5 breq2 4037 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  ( B F x  <->  B F
( F `  B
) ) )
64, 5bibi12d 235 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  (
( ( F `  B )  =  x  <-> 
B F x )  <-> 
( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) ) )
76imbi2d 230 . . . . . 6  |-  ( x  =  ( F `  B )  ->  (
( ( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  x  <->  B F x ) )  <->  ( ( F  Fn  A  /\  B  e.  A )  ->  (
( F `  B
)  =  ( F `
 B )  <->  B F
( F `  B
) ) ) ) )
8 fneu 5362 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! x  B F x )
9 tz6.12c 5588 . . . . . . 7  |-  ( E! x  B F x  ->  ( ( F `
 B )  =  x  <->  B F x ) )
108, 9syl 14 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  x  <-> 
B F x ) )
117, 10vtoclg 2824 . . . . 5  |-  ( ( F `  B )  e.  _V  ->  (
( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  ( F `  B )  <->  B F
( F `  B
) ) ) )
123, 11mpcom 36 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) )
131, 12mpbii 148 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  B F ( F `
 B ) )
14 breq2 4037 . . 3  |-  ( ( F `  B )  =  C  ->  ( B F ( F `  B )  <->  B F C ) )
1513, 14syl5ibcom 155 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  ->  B F C ) )
16 fnfun 5355 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
17 funbrfv 5599 . . . 4  |-  ( Fun 
F  ->  ( B F C  ->  ( F `
 B )  =  C ) )
1816, 17syl 14 . . 3  |-  ( F  Fn  A  ->  ( B F C  ->  ( F `  B )  =  C ) )
1918adantr 276 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( B F C  ->  ( F `  B )  =  C ) )
2015, 19impbid 129 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E!weu 2045    e. wcel 2167   _Vcvv 2763   class class class wbr 4033   Fun wfun 5252    Fn wfn 5253   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  fnopfvb  5602  funbrfvb  5603  dffn5im  5606  fnsnfv  5620  fndmdif  5667  dffo4  5710  dff13  5815  isoini  5865  1stconst  6279  2ndconst  6280  znleval  14209  pw1nct  15647
  Copyright terms: Public domain W3C validator