ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb Unicode version

Theorem fnbrfvb 5414
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )

Proof of Theorem fnbrfvb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2113 . . . 4  |-  ( F `
 B )  =  ( F `  B
)
2 funfvex 5390 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  _V )
32funfni 5179 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B
)  e.  _V )
4 eqeq2 2122 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  (
( F `  B
)  =  x  <->  ( F `  B )  =  ( F `  B ) ) )
5 breq2 3897 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  ( B F x  <->  B F
( F `  B
) ) )
64, 5bibi12d 234 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  (
( ( F `  B )  =  x  <-> 
B F x )  <-> 
( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) ) )
76imbi2d 229 . . . . . 6  |-  ( x  =  ( F `  B )  ->  (
( ( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  x  <->  B F x ) )  <->  ( ( F  Fn  A  /\  B  e.  A )  ->  (
( F `  B
)  =  ( F `
 B )  <->  B F
( F `  B
) ) ) ) )
8 fneu 5183 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! x  B F x )
9 tz6.12c 5403 . . . . . . 7  |-  ( E! x  B F x  ->  ( ( F `
 B )  =  x  <->  B F x ) )
108, 9syl 14 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  x  <-> 
B F x ) )
117, 10vtoclg 2715 . . . . 5  |-  ( ( F `  B )  e.  _V  ->  (
( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  ( F `  B )  <->  B F
( F `  B
) ) ) )
123, 11mpcom 36 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) )
131, 12mpbii 147 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  B F ( F `
 B ) )
14 breq2 3897 . . 3  |-  ( ( F `  B )  =  C  ->  ( B F ( F `  B )  <->  B F C ) )
1513, 14syl5ibcom 154 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  ->  B F C ) )
16 fnfun 5176 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
17 funbrfv 5412 . . . 4  |-  ( Fun 
F  ->  ( B F C  ->  ( F `
 B )  =  C ) )
1816, 17syl 14 . . 3  |-  ( F  Fn  A  ->  ( B F C  ->  ( F `  B )  =  C ) )
1918adantr 272 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( B F C  ->  ( F `  B )  =  C ) )
2015, 19impbid 128 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461   E!weu 1973   _Vcvv 2655   class class class wbr 3893   Fun wfun 5073    Fn wfn 5074   ` cfv 5079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fn 5082  df-fv 5087
This theorem is referenced by:  fnopfvb  5415  funbrfvb  5416  dffn5im  5419  fnsnfv  5432  fndmdif  5477  dffo4  5520  dff13  5621  isoini  5671  1stconst  6069  2ndconst  6070
  Copyright terms: Public domain W3C validator