| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnbrfvb | Unicode version | ||
| Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnbrfvb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . . 4
| |
| 2 | funfvex 5592 |
. . . . . 6
| |
| 3 | 2 | funfni 5375 |
. . . . 5
|
| 4 | eqeq2 2214 |
. . . . . . . 8
| |
| 5 | breq2 4047 |
. . . . . . . 8
| |
| 6 | 4, 5 | bibi12d 235 |
. . . . . . 7
|
| 7 | 6 | imbi2d 230 |
. . . . . 6
|
| 8 | fneu 5379 |
. . . . . . 7
| |
| 9 | tz6.12c 5605 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 14 |
. . . . . 6
|
| 11 | 7, 10 | vtoclg 2832 |
. . . . 5
|
| 12 | 3, 11 | mpcom 36 |
. . . 4
|
| 13 | 1, 12 | mpbii 148 |
. . 3
|
| 14 | breq2 4047 |
. . 3
| |
| 15 | 13, 14 | syl5ibcom 155 |
. 2
|
| 16 | fnfun 5370 |
. . . 4
| |
| 17 | funbrfv 5616 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | 18 | adantr 276 |
. 2
|
| 20 | 15, 19 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: fnopfvb 5619 funbrfvb 5620 dffn5im 5623 fnsnfv 5637 fndmdif 5684 dffo4 5727 dff13 5836 isoini 5886 1stconst 6306 2ndconst 6307 znleval 14386 pw1nct 15902 |
| Copyright terms: Public domain | W3C validator |