ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnbrfvb Unicode version

Theorem fnbrfvb 5558
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )

Proof of Theorem fnbrfvb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  ( F `
 B )  =  ( F `  B
)
2 funfvex 5534 . . . . . 6  |-  ( ( Fun  F  /\  B  e.  dom  F )  -> 
( F `  B
)  e.  _V )
32funfni 5318 . . . . 5  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B
)  e.  _V )
4 eqeq2 2187 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  (
( F `  B
)  =  x  <->  ( F `  B )  =  ( F `  B ) ) )
5 breq2 4009 . . . . . . . 8  |-  ( x  =  ( F `  B )  ->  ( B F x  <->  B F
( F `  B
) ) )
64, 5bibi12d 235 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  (
( ( F `  B )  =  x  <-> 
B F x )  <-> 
( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) ) )
76imbi2d 230 . . . . . 6  |-  ( x  =  ( F `  B )  ->  (
( ( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  x  <->  B F x ) )  <->  ( ( F  Fn  A  /\  B  e.  A )  ->  (
( F `  B
)  =  ( F `
 B )  <->  B F
( F `  B
) ) ) ) )
8 fneu 5322 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  E! x  B F x )
9 tz6.12c 5547 . . . . . . 7  |-  ( E! x  B F x  ->  ( ( F `
 B )  =  x  <->  B F x ) )
108, 9syl 14 . . . . . 6  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  x  <-> 
B F x ) )
117, 10vtoclg 2799 . . . . 5  |-  ( ( F `  B )  e.  _V  ->  (
( F  Fn  A  /\  B  e.  A
)  ->  ( ( F `  B )  =  ( F `  B )  <->  B F
( F `  B
) ) ) )
123, 11mpcom 36 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  ( F `  B )  <-> 
B F ( F `
 B ) ) )
131, 12mpbii 148 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  B F ( F `
 B ) )
14 breq2 4009 . . 3  |-  ( ( F `  B )  =  C  ->  ( B F ( F `  B )  <->  B F C ) )
1513, 14syl5ibcom 155 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  ->  B F C ) )
16 fnfun 5315 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
17 funbrfv 5556 . . . 4  |-  ( Fun 
F  ->  ( B F C  ->  ( F `
 B )  =  C ) )
1816, 17syl 14 . . 3  |-  ( F  Fn  A  ->  ( B F C  ->  ( F `  B )  =  C ) )
1918adantr 276 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( B F C  ->  ( F `  B )  =  C ) )
2015, 19impbid 129 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  C  <-> 
B F C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E!weu 2026    e. wcel 2148   _Vcvv 2739   class class class wbr 4005   Fun wfun 5212    Fn wfn 5213   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  fnopfvb  5559  funbrfvb  5560  dffn5im  5563  fnsnfv  5577  fndmdif  5623  dffo4  5666  dff13  5771  isoini  5821  1stconst  6224  2ndconst  6225  pw1nct  14837
  Copyright terms: Public domain W3C validator