ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2 Unicode version

Theorem eqfnfv2 5522
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
Distinct variable groups:    x, A    x, F    x, G
Allowed substitution hint:    B( x)

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 4742 . . . 4  |-  ( F  =  G  ->  dom  F  =  dom  G )
2 fndm 5225 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
3 fndm 5225 . . . . 5  |-  ( G  Fn  B  ->  dom  G  =  B )
42, 3eqeqan12d 2155 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( dom  F  =  dom  G  <->  A  =  B ) )
51, 4syl5ib 153 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  ->  A  =  B ) )
65pm4.71rd 391 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  F  =  G ) ) )
7 fneq2 5215 . . . . . 6  |-  ( A  =  B  ->  ( G  Fn  A  <->  G  Fn  B ) )
87biimparc 297 . . . . 5  |-  ( ( G  Fn  B  /\  A  =  B )  ->  G  Fn  A )
9 eqfnfv 5521 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
108, 9sylan2 284 . . . 4  |-  ( ( F  Fn  A  /\  ( G  Fn  B  /\  A  =  B
) )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
1110anassrs 397 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  A  =  B )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
1211pm5.32da 447 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  =  B  /\  F  =  G )  <->  ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
136, 12bitrd 187 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   A.wral 2416   dom cdm 4542    Fn wfn 5121   ` cfv 5126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-iota 5091  df-fun 5128  df-fn 5129  df-fv 5134
This theorem is referenced by:  eqfnfv3  5523  eqfunfv  5526  eqfnov  5880  2ffzeq  9942
  Copyright terms: Public domain W3C validator