ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfv2 Unicode version

Theorem eqfnfv2 5635
Description: Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
eqfnfv2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
Distinct variable groups:    x, A    x, F    x, G
Allowed substitution hint:    B( x)

Proof of Theorem eqfnfv2
StepHypRef Expression
1 dmeq 4845 . . . 4  |-  ( F  =  G  ->  dom  F  =  dom  G )
2 fndm 5334 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
3 fndm 5334 . . . . 5  |-  ( G  Fn  B  ->  dom  G  =  B )
42, 3eqeqan12d 2205 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( dom  F  =  dom  G  <->  A  =  B ) )
51, 4imbitrid 154 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  ->  A  =  B ) )
65pm4.71rd 394 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  F  =  G ) ) )
7 fneq2 5324 . . . . . 6  |-  ( A  =  B  ->  ( G  Fn  A  <->  G  Fn  B ) )
87biimparc 299 . . . . 5  |-  ( ( G  Fn  B  /\  A  =  B )  ->  G  Fn  A )
9 eqfnfv 5634 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
108, 9sylan2 286 . . . 4  |-  ( ( F  Fn  A  /\  ( G  Fn  B  /\  A  =  B
) )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
1110anassrs 400 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  A  =  B )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
1211pm5.32da 452 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  =  B  /\  F  =  G )  <->  ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
136, 12bitrd 188 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G  <-> 
( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2468   dom cdm 4644    Fn wfn 5230   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243
This theorem is referenced by:  eqfnfv3  5636  eqfunfv  5639  eqfnov  6003  2ffzeq  10171
  Copyright terms: Public domain W3C validator